• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    SURFACE CHARACTERIZATION OF TITANIUM AND TITANIUM DEUTERIDE GAS-PHASE AND SOLUTION-PHASE OXIDATION PROCESSES (SURFACE ANALYSIS, ANGER ELECTRON SPECTROSCOPY).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8424916_sip1_m.pdf
    Size:
    7.718Mb
    Format:
    PDF
    Description:
    azu_td_8424916_sip1_m.pdf
    Download
    Author
    Burrell, Michael Craig
    Issue Date
    1984
    Keywords
    Titanium.
    Oxidation.
    Oxide coating.
    Electrolytic oxidation.
    Metals -- Anodic oxidation.
    Advisor
    Armstrong, Neal R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The reactions of atomically clean, titanium film surfaces with oxygen, deuterium, and water have been investigated. Auger Electron Spectroscopy was utilized to monitor the formation 9f a surface oxide in the case of oxygen exposure, and to characterize the deuteride which formed upon deuterium absorption, and its subsequent oxidation. Quantification of surface oxide stoichiometries was facilitated by novel data acquisition and treatment schemes. The quartz crystal microbalance was used to measure the mass of adsorbed oxygen or deuterium with submonolayer sensitivity. Electron energy loss spectroscopy was sensitive to the presence of Ti⁺³ in the surface oxide. The initial oxidation of the titanium surface was characterized by the dissociative adsorption of three mono1ayers of oxygen atoms at a constant rate. The oxide formed during this reaction stage was a Ti₂0₃/Ti0₂ mixture with a total thickness of 13 A. The rate of oxygen adsorption then decreased such that oxide growth was logarithmic with time. When the oxide had attained a total thickness of 20 A, the initial suboxide was converted to Ti0₂, and subsequent oxide formed was purely Ti0₂. Oxide growth occurred by oxygen anion migration under the influence of an electrostatic field, set up across the oxide layer by electron transfer from the metal to adsorbed oxygen species. The pressure dependence of the oxide growth rate and terminal thickness suggested a constant field growth mechanism. Clean titanium films reacted with deuterium to form a bulk deuteride TiDₓ (x<2). The oxide layer which resulted from oxygen exposure was characterized by the above techniques. Oxide layers greater than 20 A completely inhibited deuterium absorption by prohibiting 02 dissociation, but did not act as a diffusional barrier when additional dissociation sites were provided. Iron adlayers were found to accelerate the D₂ absorption reaction. Removal of the titanium films from the vacuum chamber to an isolable electrochemical reaction chamber, without exposure to the atmosphere, allowed a determination of the effect of the various gas/solid reactions on the subsequent electrochemical oxidation processes.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.