• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    AVAILABLE ENERGY AND SPECIES DIVERSITY: THEORY AND EXPERIMENTS WITH BEES (COMMUNITIES, FLOWERS, FORAGING).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8500480_sip1_w.pdf
    Size:
    3.229Mb
    Format:
    PDF
    Download
    Author
    WRIGHT, DAVID HAMILTON.
    Issue Date
    1984
    Keywords
    Bees -- Speciation.
    Ecological genetics.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A general biogeographic theory of insular species diversity, species-energy theory, is produced by replacing area in species-area models with a measure of available energy. Islands with more available energy support larger populations, which have lower extinction rates. Given similar immigration rates, islands with greater available energy are therefore expected to support greater equilibrium numbers of species. Assuming that total population size is proportional to energy supply, and that species-abundance distributions are lognormal and of similar form, the species-energy relationship is approximated by S = kEᶻ. Species-energy theory explains 70-80% of the variation in species number of angiosperms and of birds on such widely varying islands as Greenland and Jamaica. The effects of energy on the structure of a subalpine bee community in Colorado were investigated. As available nector declined, during mornings and over the season, foraging profitability for Bombus appositus (Hymenoptera: Apidae) decreased. This change was manifested by increased foraging trip durations: nector loads did not change. Total colony profits increased as colonies grew over the season, but profit relative to colony size declined, due to reduced profitability of individual foraging trips. These results support the hypothesis of resource limitation in this species. Assemblages of bees foraging on patches of flowers showed effects of energy availability on species composition and dynamics. Bees foraging in enriched patches had lower departure rates than bees in control patches, and, consequently, increased equilibrium numbers of individuals and species present per patch. Both behavioral and mechanical factors influenced departure rates. A species-specific arrival-departure rate model satisfactorily described the foraging assemblages and their response to enrichment. Experiments performed on 2 species of flowers with different corolla tube lengths demonstrated that bee species respond differently to resources of unequal availability, necessitating a species-level approach. Analogies with island systems are discussed. Energy is important to communities in general and bees in particular on a variety of scales. By implication, human resource diversion from natural ecosystems may have profound impacts on global diversity and extinction.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Ecology & Evolutionary Biology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.