• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    STRESSES AND ELASTIC CONSTANTS OF CRYSTALLINE SODIUM, FROM MOLECULAR DYNAMICS.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8504132_sip1_w.pdf
    Size:
    3.538Mb
    Format:
    PDF
    Download
    Author
    SCHIFERL, SHEILA KLEIN.
    Issue Date
    1984
    Keywords
    Metals -- Thermomechanical properties.
    Molecular dynamics.
    Sodium.
    Physics -- Simulation methods.
    Advisor
    Wangsness, Roald K.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The stresses and the elastic constants of bcc sodium are calculated by molecular dynamics (MD) for temperatures to T = 340 K. The total adiabatic potential of a system of sodium atoms is represented by a pseudopotential model. The resulting expression has two terms: a large, strictly volume-dependent potential, plus a sum over ion pairs of a small, volume-dependent two-body potential. The stresses and the elastic constants are given as strain derivatives of the Helmholtz free energy. The resulting expressions involve canonical ensemble averages (and fluctuation averages) of the position and volume derivatives of the potential. An ensemble correction relates the results to MD equilibrium averages. Evaluation of the potential and its derivatives requires the calculation of integrals with infinite upper limits of integration, and integrand singularities. Methods for calculating these integrals and estimating the effects of integration errors are developed. A method is given for choosing initial conditions that relax quickly to a desired equilibrium state. Statistical methods developed earlier for MD data are extended to evaluate uncertainties in fluctuation averages, and to test for symmetry. The fluctuation averages make a large contribution to the elastic constants, and the uncertainties in these averages are the dominant uncertainties in the elastic constants. The strictly volume-dependent terms are very large. The ensemble correction is small but significant at higher temperatures. Surprisingly, the volume derivatives of the two-body potential make large contributions to the stresses and the elastic constants. The effects of finite potential range and finite system size are discussed, as well as the effects of quantum corrections and electronic excitations. The agreement of theory and experiment is very good for the magnitudes of C₁₁ and C₁₂. The magnitude of C₄₄ is consistently small by ∼9 kbar for finite temperatures. This discrepancy is most likely due to the neglect of three-body contributions to the potential. The agreement of theory and experiment is excellent for the temperature dependences of all three elastic constants. This result illustrates a definite advantage of MD compared to lattice dynamics for conditions where classical statistics are valid. MD methods involve direct calculations of anharmonic effects; no perturbation treatment is necessary.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Physics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.