• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    MEAN TURBULENCE STRUCTURE IN STRONGLY HEATED AIR FLOWS.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8510896_sip1_m.pdf
    Size:
    5.972Mb
    Format:
    PDF
    Description:
    azu_td_8510896_sip1_m.pdf
    Download
    Author
    SHEHATA, AHMED-MOHSEN TAWFICK MOHAMED.
    Issue Date
    1984
    Keywords
    Temperature control.
    Gas cooled reactors.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Measurements of mean velocity and mean temperature fields and wall parameters for air flowing in a smooth, vertical tube at low entry Reynolds numbers are presented for heating with constant wall heat flux along the heated length. Two entry Reynolds numbers of approximately 6000 and 4000 were employed with three heating rates, q('+) = q('w'')/ (Gc(,p,i) T(,i)), of approximately 0.0018, 0.0035 and 0.0045. The flow development was measured by obtaining internal profiles along the heated length at axial locations from x/D = 3.17 to x/D = 24.54. An adiabatic entry of 50 diameters preceded the heated region. The three heating rates caused slight, large and severe property variation of the air. The highest heating rate was found to cause significant buoyancy effects. The internal measurements were obtained using constant temperature hot-wire anemometry and resistance thermometry for velocity and temperature, respectively, employing a single short wire probe. The technique developed and employed for the use of a single short hot wire in velocity measurements in non-isothermal flows is presented. The measurements are compared to numerical predictions employing two simple versions of the van Driest mixing length turbulence model. In general, both models agreed with the measurements reasonably well, but for the higher heating rates neither model was completely satisfactory in predicting the velocity profiles. When the buoyancy parameter reached 0.3, the peak velocity occurred in the wall region rather than at the tube centerline. Typically, the Nusselt number was overpredicted by 10% for x/D > 14 and, consequently, the wall temperature was underpredicted by about 7%.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Aerospace and Mechanical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.