• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DEGENERATE FOUR WAVE MIXING IN THIN FILM OPTICAL WAVEGUIDES (NONLINEAR OPTICS, INTEGRATED, PHASE CONJUGATION, SIGNAL PROCESSING).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8511702_sip1_w.pdf
    Size:
    3.746Mb
    Format:
    PDF
    Download
    Author
    KARAGULEFF, CHRIS.
    Issue Date
    1985
    Keywords
    Wave guides.
    Thin films -- Optical properties.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The incentive for conducting Degenerate Four Wave Mixing (DFWM) within guided wave devices is two-fold: (1) By coupling the optical beams into guided wave devices, the optical power densities can be increased orders of magnitude due to the tight confinement of the beams. Such an increase in power density means a concomitant increase in conversion efficiency of the signal beam. (2) The potential signal processing applications of DFWM (logic gates, switching, correlation/convolution), particularly for ultra-fast serial processing, would be better exploited, and adjoined to existing integrated circuit technology, by such an integrated optic/guided wave approach. In this dissertation we describe experiments and present data confirming the presence of DFWM within a planar glass thin film with carbon disulphide as the nonlinear cover medium. Optical pulses from a Q-switched, frequency doubled Nd:YAG laser are coupled into the glass film. The nonlinear polarization required to produce the desired conjugate signal is generated within the CS₂ by the evanescent tails of the guided input beams as they probe the nonlinear cover medium. The signals measured agree well with theory, but because they were so small in magnitude, signal-to noise ratios were small due to stray background radiation scattering from beamsplitters and other associated optics. Additionally, recent studies (Jain & Lind, 1983) indicate nonlinear responses in semiconductor (CdS/Se) doped glasses, commercially available as color glass filters, that are orders of magnitude higher than corresponding nonlinearities within CS₂, in addition to possessing subnanosecond response times. We have performed experiments upon such glasses in an effort to fabricate nonlinear optical waveguides within them via ion-exchange techniques. We have successfully fabricated single mode planar guides, but they are currently too lossy to allow demonstration of any guided wave nonlinearities. Also, we describe experiments in which we have measured (bulk) DFWM grating lifetimes with greater precision than previously reported. Results indicate a fast (20 to 50 pico-seconds, depending on the particular glass) electronic response, superimposed upon, but clearly distinguishable from, a slower (10's of nanoseconds) thermal response.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.