• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    OBSERVATION OF CHAOS IN A HYBRID OPTICAL BISTABLE DEVICE (PERIOD-DOUBLING).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8512681_sip1_w.pdf
    Size:
    3.678Mb
    Format:
    PDF
    Download
    Author
    DERSTINE, MATTHEW WILLIAM.
    Issue Date
    1985
    Keywords
    Chaotic behavior in systems.
    Optical bistability.
    Advisor
    Hopf, Fred
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    An analog of an optically bistable device made constructed from both optical and electronic components is used to study chaos. This hybrid optically bistable system has a delay in the feedback so that the response time of the electronics is much faster than the feedback time. Such a system is unstable and shows pulsations and chaos. The character of the pulsations change as the gain of the amplifier or the input laser power is increased. These changes make up the period doubling route to chaos. Not all of the waveforms of an ideal period doubling sequence are observed. This truncation of the period-doubling sequence in the device is investigated as a function of the noise present in the system. Increasing the noise level decreases the number of period doublings observed. In the chaotic regime waveforms other than those predicted are observed. These waveforms are the frequency-locked waveforms seen in an earlier experiment which we find to be modified versions of the typical period-doubled waveforms. The transitions between these waveforms are discontinuous, and show hysteresis loops. By the introduction of an external locking signal, we are able to stabilize waveforms in the neighborhood of the discontinuous transitions. By so doing we show that the transitions among the branches are due to their lack of stability. The transitions are thus not strictly first-order nonequilibrium phase transitions, since in that case the branches cease to exist at the transition point. Since the path to chaos is nonunique, the types of chaos that are observable are also nonunique. To suggest a way to distinguish between different types of chaos and also to provide a tool for the study of chaos in other systems, we propose an operational test for chaos which leads to a straightforward experimental distinction between chaos and noise. We examine this test using the hybrid device to show that the method works. The test involves repeated measurement of the initial transient of a system whose initial condition is fixed. This method could be used to determine the existence of chaos in faster optical systems.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.