• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    THE INFLUENCE OF GALAXY INTERACTIONS ON NUCLEAR ACTIVITY (INFRARED, PHOTOMETRY).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8525594_sip1_m.pdf
    Size:
    4.346Mb
    Format:
    PDF
    Description:
    azu_td_8525594_sip1_m.pdf
    Download
    Author
    CUTRI, ROC MICHAEL.
    Issue Date
    1985
    Keywords
    Galactic nuclei.
    Galaxies.
    Advisor
    Rieke, George
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation examines empirically the effects of gravitational interactions between galaxies on their respective nuclei with the primary motivation of investigating the possible connection between such interactions and the presence of vigorous nuclear activity. To carry out this work, ground based near and mid-infrared observations, along with the mid- and far infrared data of IRAS of a statistically complete sample of interacting galaxies drawn from the Catalog of Isolated Pairs of Galaxies in the Northern Hemisphere (Karachentsev 1972) were utilized. Also performed were detailed probes of four known active, interacting and possible interacting systems, which made use of infrared multiaperture photometry and spectrophotometry. Comparison of the nuclear infrared properties of the interacting galaxies with samples of non-interacting galaxies shows that abnormal activity, characterized by excess 10 μm emission or extremely red or blue near infrared colors, is much more common in the interacting systems. In particular, a population of nuclei with extremely luminous 10 μm emission appears to be unique to the interacting sample. The in-depth studies of individual active systems have revealed extended 3.3 μm emission around the nucleus of NGC 7469, implying the presence of an extended heating source. The most plausible such source are the hot stars associated with star forming regions surrounding the Seyfert nucleus. The extraordinary Seyfert galaxy Mrk 231 may also be the site for powerful star formation, as evidenced by the extreme luminosity of the extended stellar system containing the Seyfert nucleus. This star formation may have resulted from the assimilation of a small satellite galaxy with a giant elliptical, or a collision between smaller systems. Tools similar to those used to probe NGC 7469 and Mrk 231 were used to investigate the interacting systems of NGC 6240 and Arp 220. These two objects are found to be the sites of star formation on an unprecedented scale, possibly involving up to 10¹⁰ Mₒ of material. The evidence suggesting the presence of these "super starbursts" includes an exceedingly luminous extended stellar component seen at 2 μm, a large population of red supergiants implied by deep stellar CO absorption, strong 3.3 μm emission and 9.7 μm silicate absorption, and an extended luminosity source indicated by the extent of the 10 μm emission. Both of these galaxies exhibit prominent lines of shocked molecular hydrogen which may arise in the collision of their interstellar clouds in an ongoing interaction.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Astronomy
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.