Show simple item record

dc.contributor.advisorHofmann, Wallaceen_US
dc.contributor.authorTABO, RAMADJITA.
dc.creatorTABO, RAMADJITA.en_US
dc.date.accessioned2011-10-31T18:59:50Z
dc.date.available2011-10-31T18:59:50Z
dc.date.issued1985en_US
dc.identifier.urihttp://hdl.handle.net/10150/188055
dc.description.abstractCotton (Gossypium hirsutum L.) grown under drip irrigation was evaluated over a two year period for physiological and morphological responses. Three water levels representing, 103, 93 and 87% of estimated consumptive use (63.6 ha-cm) were used in Marana, AZ. in 1983. In 1984, cotton was grown under eight drip irrigation treatments corresponding to 120, 100, 80 and 60% of the estimated consumptive use (79.5 ha-cm) in Stanfield, AZ. These volumes of water were applied as small daily amounts and larger weekly amounts for a total of eight irrigation treatments. The experimental design was a randomized complete block with four replications. Mean leaf area ratio (LAR), leaf area index (LAI), mean net assimilation rate (NAR), mean relative growth rate (RGR), mean crop growth rate (CGR), plant height and the number of mainstem nodes were determined using the growth analysis method. Transpiration, diffusive resistance, leaf and ambient temperatures were measured with a steady state porometer. Apparent photosynthesis (APS) was determined in 1983 with an infrared gas analyzer which measured CO(,2) concentrations. In 1983, the cotton plants from the 103% irrigation treatment had greater transpiration, lower diffusive resistance and lower APS than the 93% treatment plants. In 1984, no significant differences were observed between the seasonal transpiration rates from the eight irrigation treatments. Cotton plants grown under the 120% treatment showed superior diffusive resistance responses than those from the 60% treatment. Temperature differentials were higher in the 120% treatments than in the 60% treatments. No significant differences were found between LAR, NAR, RGR and CGR during 1983 and 1984. Even though there were no differences between the total number of flowers produced in the three treatments in 1983, the 93 and 87% treatment plants produced more seed cotton than the 103% treatment plants. In 1984, the seed cotton yield from the 60% daily treatment was significantly the lowest. Due to the problems related to the late initiation of treatments and excessive rainfall, the physiological and morphological responses of cotton were inconsistent across the various water levels in 1983. Regression analysis confirmed the erratic responses of cotton plants from the weekly treatments across the wide range of environmental conditions in 1984.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectCotton -- Irrigation -- Arizona.en_US
dc.subjectMicroirrigation -- Arizona.en_US
dc.titleMORPHOLOGICAL AND PHYSIOLOGICAL DEVELOPMENT OF COTTON UNDER VARIOUS REGIMES OF DRIP IRRIGATION (STRESS, GROWTH, TRICKLE, WATER USE EFFICIENCY, ARIZONA).en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc696633571en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberDobrenz, Albert K.en_US
dc.contributor.committeememberTaylor, Brooks B.en_US
dc.contributor.committeememberOgden, Phil R.en_US
dc.contributor.committeememberCox, Milo L.en_US
dc.contributor.committeememberSmith, Lamar E.en_US
dc.identifier.proquest8526321en_US
thesis.degree.disciplinePlant Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
dc.description.noteThis item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu.
dc.description.admin-noteOriginal file replaced with corrected file July 2023.
refterms.dateFOA2018-08-13T23:21:38Z
html.description.abstractCotton (Gossypium hirsutum L.) grown under drip irrigation was evaluated over a two year period for physiological and morphological responses. Three water levels representing, 103, 93 and 87% of estimated consumptive use (63.6 ha-cm) were used in Marana, AZ. in 1983. In 1984, cotton was grown under eight drip irrigation treatments corresponding to 120, 100, 80 and 60% of the estimated consumptive use (79.5 ha-cm) in Stanfield, AZ. These volumes of water were applied as small daily amounts and larger weekly amounts for a total of eight irrigation treatments. The experimental design was a randomized complete block with four replications. Mean leaf area ratio (LAR), leaf area index (LAI), mean net assimilation rate (NAR), mean relative growth rate (RGR), mean crop growth rate (CGR), plant height and the number of mainstem nodes were determined using the growth analysis method. Transpiration, diffusive resistance, leaf and ambient temperatures were measured with a steady state porometer. Apparent photosynthesis (APS) was determined in 1983 with an infrared gas analyzer which measured CO(,2) concentrations. In 1983, the cotton plants from the 103% irrigation treatment had greater transpiration, lower diffusive resistance and lower APS than the 93% treatment plants. In 1984, no significant differences were observed between the seasonal transpiration rates from the eight irrigation treatments. Cotton plants grown under the 120% treatment showed superior diffusive resistance responses than those from the 60% treatment. Temperature differentials were higher in the 120% treatments than in the 60% treatments. No significant differences were found between LAR, NAR, RGR and CGR during 1983 and 1984. Even though there were no differences between the total number of flowers produced in the three treatments in 1983, the 93 and 87% treatment plants produced more seed cotton than the 103% treatment plants. In 1984, the seed cotton yield from the 60% daily treatment was significantly the lowest. Due to the problems related to the late initiation of treatments and excessive rainfall, the physiological and morphological responses of cotton were inconsistent across the various water levels in 1983. Regression analysis confirmed the erratic responses of cotton plants from the weekly treatments across the wide range of environmental conditions in 1984.


Files in this item

Thumbnail
Name:
azu_td_8526321_sip1_c.pdf
Size:
3.692Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record