We are upgrading the repository! A content freeze is in effect until December 6th, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.authorKINGSLEY, KENNETH JAMES.
dc.creatorKINGSLEY, KENNETH JAMES.en_US
dc.date.accessioned2011-10-31T19:00:15Z
dc.date.available2011-10-31T19:00:15Z
dc.date.issued1985en_US
dc.identifier.urihttp://hdl.handle.net/10150/188068
dc.description.abstractThe Santa Cruz valley in Arizona is a rapidly urbanizing area. Complaints by residents of the area about pest mosquitoes prompted the investigation of mosquito breeding sources and a search for management techniques that would reduce mosquito populations. Many types of mosquito breeding sites were found in the area, and eight species of mosquitoes were identified. The greatest source of mosquitoes was a 2400 hectare irrigated pecan orchard. The most numerous and annoying mosquitoes were Aedes vexans (Meigen) and Psorophora columbiae (Dyar and Knab). The orchard is irrigated ca. every two weeks from April through October by flooding level areas, called borders, between rows of trees. Mosquitoes hatched with every irrigation studied, from April through September, but reached annoying numbers from late April through mid-September. A. vexans was the dominant species in early spring and P. columbiae was dominant in summer. Highest populations were reached coincident with the summer rainy season in July and August. Tests were performed to determine the efficacy of Bacillus thuringiensis israelensis (B.t.i.) as an additive to irrigation water for control of mosquito larvae. The larvicidal material was effective at all concentrations from .586 to 2.344 l/ha and with all techniques used. The most cost-effective application technique was to use fertilizer tanks to drip a mixture of B.t.i. into irrigation water in ditches before the water ran into fields. The general rate of three parts larvicide per million parts irrigation water was found to be effective, especially when supplemented with a spray of one part larvicide to 64 parts water applied to the ends of borders two to three days following irrigation. An increase in larvicide concentration was found to be necessary during the peak of mosquito season. A successful management program was developed and applied for 1 year, during which no mosquito complaints were made by citizens, the population of mosquitoes in the orchard was reduced to a point where farm laborers were no longer annoyed, and farm managers were satisfied that the program was cost effective.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectMosquitoes -- Control -- Arizona -- Santa Cruz Valley.en_US
dc.subjectSanta Cruz Valley (Ariz.)en_US
dc.titleBIONOMICS AND MANAGEMENT OF PEST MOSQUITOES AT THE AGRO-URBAN INTERFACE, SANTA CRUZ VALLEY, ARIZONA (B.T.I., BIOLOGICAL CONTROL, I.P.M., BACILLUS THURINGIENSIS).en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc696794541en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest8529400en_US
thesis.degree.disciplineEntomologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2018-08-24T03:59:16Z
html.description.abstractThe Santa Cruz valley in Arizona is a rapidly urbanizing area. Complaints by residents of the area about pest mosquitoes prompted the investigation of mosquito breeding sources and a search for management techniques that would reduce mosquito populations. Many types of mosquito breeding sites were found in the area, and eight species of mosquitoes were identified. The greatest source of mosquitoes was a 2400 hectare irrigated pecan orchard. The most numerous and annoying mosquitoes were Aedes vexans (Meigen) and Psorophora columbiae (Dyar and Knab). The orchard is irrigated ca. every two weeks from April through October by flooding level areas, called borders, between rows of trees. Mosquitoes hatched with every irrigation studied, from April through September, but reached annoying numbers from late April through mid-September. A. vexans was the dominant species in early spring and P. columbiae was dominant in summer. Highest populations were reached coincident with the summer rainy season in July and August. Tests were performed to determine the efficacy of Bacillus thuringiensis israelensis (B.t.i.) as an additive to irrigation water for control of mosquito larvae. The larvicidal material was effective at all concentrations from .586 to 2.344 l/ha and with all techniques used. The most cost-effective application technique was to use fertilizer tanks to drip a mixture of B.t.i. into irrigation water in ditches before the water ran into fields. The general rate of three parts larvicide per million parts irrigation water was found to be effective, especially when supplemented with a spray of one part larvicide to 64 parts water applied to the ends of borders two to three days following irrigation. An increase in larvicide concentration was found to be necessary during the peak of mosquito season. A successful management program was developed and applied for 1 year, during which no mosquito complaints were made by citizens, the population of mosquitoes in the orchard was reduced to a point where farm laborers were no longer annoyed, and farm managers were satisfied that the program was cost effective.


Files in this item

Thumbnail
Name:
azu_td_8529400_sip1_m.pdf
Size:
4.389Mb
Format:
PDF
Description:
azu_td_8529400_sip1_m.pdf

This item appears in the following Collection(s)

Show simple item record