• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    THE ELECTRONIC STRUCTURES OF ORGANOMETALLIC ALKYNE AND VINYLIDENE COMPLEXES AS DETERMINED BY X-RAY AND ULTRAVIOLET PHOTOELECTRON SPECTROSCOPY (CYCLOPENTADIENYL, VALENCE, MANGANESE, CORE, VANADIUM).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8529403_sip1_w.pdf
    Size:
    6.295Mb
    Format:
    PDF
    Download
    Author
    PANG, LOUIS SING KIM.
    Issue Date
    1985
    Keywords
    Ligands -- Reactivity.
    Catalysis.
    Photoelectron spectroscopy.
    Catalysts.
    Advisor
    Lichtenberger, Dennis
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The chemistry and bonding of alkynes and vinylidenes in organometallic complexes have been investigated. A variety of these complexes have been synthesized and characterized by X-ray crystallography, temperature-dependent NMR, molecular orbital calculations, and most importantly, HeI, HeII and MgKα photoelectron spectroscopy (PES). The core and valence ionizations are found to be very informative with regard to the relative bond strengths and stabilities of these complexes. The first step involved preparation of the series of complexes R-CpM(CO)₂(alkyne) (R-Cp = Cp, MeCp and Me₅Cp). When M = Mn, Re (alkyne = 3-hexyne, 2-butyne and hexafluoro-2-butyne), the molecular mirror plane bisects the alkyne (horizontal conformation). PES shows the alkyne (π(⊥)) orbital forms a filled-filled interaction with the frontier metal orbital which is significantly destabilized. The ionizations derived from the two alkyne π orbitals are not split. When M = V, the alkyne (C₂H₂, 3-hexyne, etc.) coincides with the molecular mirror plane (vertical conformation). PES shows the alkyne π(⊥) orbital donates electrons to the electron deficient vanadium and the metal backbonds strongly to the alkyne. Electronic factors controlling the conformations in the d⁶ manganese case has been much discussed in the literature. Another factor not previously identified is necessary for understanding the conformation in the d⁴ vanadium case. The energy of the LUMO reveals that this factor is donation of cyclopentadienyl electrons into an empty d orbital of the electron deficient vanadium. Rearrangement of alkyne complexes to terminal vinylidene and bridging vinylidene complexes, similar to reactions of organic molecules on metal surfaces, were also investigated. The series of [R-CpMn(CO)₂]₂(μC=CHR') (R' = H, Me) (Chapter 6) and CpMn(CO)₂(C=CHBuᵗ) (Chapter 7) complexes were prepared. PES showed that the terminal vinylidene ligand has less filled-filled interaction with the metal and stabilizes the metal more than the alkyne does. The bridging vinylidene accepts more electron density from the metals and stabilizes the metals more than the terminal vinylidene. The removal of antibonding electrons from the HOMO of the metal fragment by the bridging vinylidene leaves net metal-metal bonding interaction and forms a stable dimetallocyclopropane structure.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.