• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    VARIATIONAL PRINCIPLES FOR FIELD VARIABLES SUBJECT TO GROUP ACTIONS (GAUGE).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8529407_sip1_w.pdf
    Size:
    2.416Mb
    Format:
    PDF
    Download
    Author
    SADE, MARTIN CHARLES.
    Issue Date
    1985
    Keywords
    Gauge fields (Physics)
    Group theory.
    Advisor
    Rund, Hanno
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation is concerned with variational problems whose field variables are functions on a product manifold M x G of two manifolds M and G. These field variables transform as type (0,1) tensor fields on M and are denoted by ψ(h)ᵅ (h = 1, ..., n = dim M, α = 1, ..., r = dim G). The dependence of ψ(h)ᵅ on the coordinates of G is given by a generalized gauge transformation that depends on a local map h:M → G. The requirement that a Lagrangian that is defined in terms of these field variables be independent of the coordinates of G and the choice of the map h endows G with a local Lie group structure. The class of Lagrangians that exhibits this type of invariance may be characterized by three invariance identities. These identities, together with an arbitrary solution of a system of partial differential equations, may be used to define field strengths associated with the ψ(h)ᵅ as well as connection and curvature forms on M. The former may be used to express the Euler-Lagrange equations in a particularly simple form. An energy-momentum tensor may also be defined in the usual manner; however additional conditions must be imposed in order to guarantee the existance of conservation laws resulting from this tensor. The above analysis may be repeated for the case that the field variables behave as type (0,2) tensor fields under coordinate transformations on M. For these field variables, the Euler-Lagrange expressions may be expressed as a product of a covariant divergence with the components λʰ of a type (1,0) vector field on M. An unexpected consequence of this construction is the fact that the Euler-Lagrange equations that result for the vector field λʰ are satisfied whenever the Euler-Lagrange equations associated with the field variables are satisfied.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Mathematics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.