Show simple item record

dc.contributor.authorBENNETT, WAYNE RICHARD.
dc.creatorBENNETT, WAYNE RICHARD.en_US
dc.date.accessioned2011-10-31T19:00:52Zen
dc.date.available2011-10-31T19:00:52Zen
dc.date.issued1985en_US
dc.identifier.urihttp://hdl.handle.net/10150/188086en
dc.description.abstractWe use high rate magnetically-confined-plasma-triode sputtering guns in a diffusion pumped vacuum chamber to fabricate metal-metal superlattices. By feedback control of the sputtering rates and microprocessor control of the substrate rotation the individual layer thicknesses were kept constant to within ±0.3% over the entire sample thickness ∼0.5 μm. We describe in detail the results of a number of structural characterization techniques applied to these materials, including Bragg Θ-2Θ x-ray diffraction, transmission and reflection Laue diffraction, wide film Debye-Scherrer diffraction, and Rutherford Backscattering Spectrometry (RBS). By depositing Ta onto freshly deposited Mo surfaces and using RBS to measure the resultant Ta coverage we determined the dependence of the Ta sticking coefficient on coverage. The same was done for Mo deposited on Ta surfaces. We grew a series of Mo/Ta superlattices with superlattice wavelengths covering the range from 10 to 120 Å. A number of four-wire resistance measuring patterns were etched in each superlattice using standard photolithographic techniques. Resistivities of the superlattice films of various layer thicknesses were then measured to a relative precision of 0.01% and an absolute accuracy of 1%. The layer thickness dependence and temperature coefficient of the resistivity of these superlattices was analyzed using grain and size effect theories.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectSuperlattices as materials.en_US
dc.titleTHE GROWTH, STRUCTURE, AND ELECTRICAL TRANSPORT PROPERTIES OF MOLYBDENUM/TANTALUM SUPERLATTICES.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc696814800en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest8603143en_US
thesis.degree.disciplinePhysicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2018-06-17T08:36:07Z
html.description.abstractWe use high rate magnetically-confined-plasma-triode sputtering guns in a diffusion pumped vacuum chamber to fabricate metal-metal superlattices. By feedback control of the sputtering rates and microprocessor control of the substrate rotation the individual layer thicknesses were kept constant to within ±0.3% over the entire sample thickness ∼0.5 μm. We describe in detail the results of a number of structural characterization techniques applied to these materials, including Bragg Θ-2Θ x-ray diffraction, transmission and reflection Laue diffraction, wide film Debye-Scherrer diffraction, and Rutherford Backscattering Spectrometry (RBS). By depositing Ta onto freshly deposited Mo surfaces and using RBS to measure the resultant Ta coverage we determined the dependence of the Ta sticking coefficient on coverage. The same was done for Mo deposited on Ta surfaces. We grew a series of Mo/Ta superlattices with superlattice wavelengths covering the range from 10 to 120 Å. A number of four-wire resistance measuring patterns were etched in each superlattice using standard photolithographic techniques. Resistivities of the superlattice films of various layer thicknesses were then measured to a relative precision of 0.01% and an absolute accuracy of 1%. The layer thickness dependence and temperature coefficient of the resistivity of these superlattices was analyzed using grain and size effect theories.


Files in this item

Thumbnail
Name:
azu_td_8603143_sip1_w.pdf
Size:
4.091Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record