• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    CONTINUOUS-TIME OPTIMAL CONTROL OF A SIMULATED BOILING WATER NUCLEAR (BWR) POWER PLANT.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8603144_sip1_m.pdf
    Size:
    3.477Mb
    Format:
    PDF
    Description:
    azu_td_8603144_sip1_m.pdf
    Download
    Author
    BOADU, HERBERT ODAME.
    Issue Date
    1985
    Keywords
    Boiling water reactors.
    Nuclear power plants.
    Advisor
    Hetrick, D. L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A suboptimal controller has been developed for a Boiling Water Reactor Nuclear Power Plant, using the DARE P Continuous Simulation Language, which was developed in the Electrical Engineering Department at the University of Arizona. A set of 48 nonlinear first-order differential equations and a large number of algebraic equations has been linearized about the equilibrium state. Using partitioning, the linearized equations were transformed into a block triangular form. The concept of optimal control and a square performance index reflecting the desired plant behavior have been applied on the slow subsystem to develop a suboptimal controller. The obtained feedback law is shown by simulation to be able to compensate for a variety of plant disturbances. A large variety of responses can be obtained by changing the weighting matrices. The control is basically a regulator approach to speed up response during load demand changes. Several simulations are included to demonstrate the control performance. The variables to be controlled have mainly been the average neutron density and the average coolant temperature. Simplifications have been suggested, thus obtaining considerable savings in the computations and ease in design.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Nuclear and Energy Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.