ELECTROCHEMICAL AND SPECTROSCOPIC STUDIES OF THIOETHER COORDINATION COMPLEXES
Author
SWANSON, DALE DORSETT.Issue Date
1985Keywords
Halides -- Spectra.Halides -- Electric properties.
Sulfides -- Spectra.
Sulfides -- Electric properties.
CYCLIC VOLTAMMETRY
OCTAHEDRAL LOW-SPIN METALS
BLUE COPPER PROTEINS
ELECTRON PARAMAGNETIC RESONANCE
Advisor
Wilson, George S.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
The bis 1,4,7-trithiacyclononane (1,4,7-TTCN) complexes of iron, cobalt, nickel and copper are reported in this work. Their properties have been examined using computer-controlled electrochemical and spectroscopic techniques. These TTCN complexes form readily, are unusually symmetrical and support electron transfer reactions at the metal center. The cobalt(II) complex is octahedral, low spin and symmetrical. Four oxidation states of cobalt-TTCN complex are observed; two one-electron transfer processes are reversible. Copper (II) bis 1,4,7-TTCN is unusually symmetrical evidenced by both solid phase and ambient temperature aqueous phase electron paramagnetic resonance spectra. An unusually high redox potential for the copper complex indicates extraordinary stability of the Cu(I) oxidation state but evidently not at the expense of Cu(II) stability. The complex also has a high formation constant compared to other copper-thioether complexes. This unusual strength of thioether donor is attributed to ligand geometry. The 1,4,7-TTCN molecule is the only known cyclic polythioether to have all sulfur atoms endodentate. This structure contributes to thermodynamic stability of complexes as the ground state configuration of the free ligand is maintained in the complex.Type
textDissertation-Reproduction (electronic)
Degree Name
Ph.D.Degree Level
doctoralDegree Program
ChemistryGraduate College