• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    HEPATITIS A VIRUS: GROWTH CHARACTERISTICS, PURIFICATION, AND CAPSID GENE ORDER (PEPTIDES, IMMUNOREACTIVITIES, POLYPEPTIDES).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8603166_sip1_m.pdf
    Size:
    2.509Mb
    Format:
    PDF
    Description:
    azu_td_8603166_sip1_m.pdf
    Download
    Author
    WHEELER, COSETTE MARIE THERESE.
    Issue Date
    1985
    Keywords
    Hepatitis A -- Genetic aspects.
    Hepatitis A.
    Advisor
    Kibler, RuthAnn
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A human isolate of hepatitis A virus (HAV) strain HAS-15 was adapted to rapid growth FRhK-4 cells and a one-step growth curve was determined. Detectable virion production was absent for approximately 20 h post-infection (p.i.) and was followed by a 4-day logarithmic phase of virus production. A maximum intracellular virus titer of 10⁹ radioimmunofocus-forming units (RFU) per milliliter was achieved and remained essentially constant for a period of up to 14 days p.i. An adsorption study with HAV HAS-15 using FRhK-4 cells demonstrated greater than 99.9% of infectious virus adsorbed at 25 C in less than 20 min. Milligram amounts of purified HAV HAS-15 were obtained from persistently-infected RFhK-4 cells. The HAV polypeptides were separated by sodium dodecyl sulfate - polyacrylamide gel electrophoresis and transferred to nitocellulose for detection by an enzyme-linked immunotransfer blot (EITB) procedure. HAV nucleotide-derived amino acid sequence was subjected to computer analysis to identify potential immunogenic regions within the HAV capsid polypeptides. Synthetic peptides corresponding to selected regions of each of the larger putative capsid polypeptides were coupled to keyhole limpet hemocyanin and used to immunize rabbits. EITB reactivities of HAV specific anti-peptide sera have allowed the identification of the gene order for the larger HAV P1 gene products and the determination of the following molecular weights: HAV VP2 or 1B (MW 27,000), HAV VP3 or 1C (MW 29,000), and HAV VP1 or 1D (MW 33,000). The disposition of the HAV capsid polypeptides with respect to the virion external surface was evaluated by EITB reactivity of HAV polypeptides with specific antisera. Hyperimmune rabbit anti-157S HAV and human IgM reacted with VP1, VP2, and VP3, while IgG reacted predominantly with VP1 and VP2. Further evaluation of the HAV virion structure was attempted by examining the relative accessibility of the virion polypeptides to various labeling reagents. Reaction of intact virions with Iodogen resulted in the predominant labeling of VP1 while labeling of VP2 and 3 was barely detectable. Selective labeling of VP1 under controlled conditions, combined with the anti-HAV IgG immunologic reactivity against VP1 and VP2, suggests that these two capsid components are more exposed on the virion surface and may play an important role in the generation of neutralizing antibodies.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Molecular and Cellular Biology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.