We are upgrading the repository! A content freeze is in effect until December 6th, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.advisorPerrier, Donald G.en_US
dc.contributor.authorGALLO, JAMES MICHAEL.
dc.creatorGALLO, JAMES MICHAEL.en_US
dc.date.accessioned2011-10-31T19:01:52Zen
dc.date.available2011-10-31T19:01:52Zen
dc.date.issued1985en_US
dc.identifier.urihttp://hdl.handle.net/10150/188118en
dc.description.abstractPart I. Following a general historical review of the development of drug targeting, critical evaluations were made of current targeted drug delivery systems. Based on the results shown by previous studies, magnetic albumin microspheres containing adriamycin is one of the most promising targetable delivery systems for the treatment of solid tumors. It was also apparent that the pharmacokinetics of drugs associated with magnetic albumin microspheres had not been determined. A systematic study of the multiple variables involved in albumin microsphere preparation was completed to identify to what extent these variables affected the microsphere size distribution. The results of this investigation led to an optimal method of microsphere preparation. Information obtained from the above studies was applied to the production of magnetic albumin microspheres containing adriamycin suitable for in vivo use. The problems of separation and quantitation of adriamycin and adriamycinol in biological matrices were investigated using ion-pairing high pressure liquid chromatography. An optimized chromatographic system was presented for the analysis of these compounds in rat serum and tissues. The disposition of adriamycin following administration as magnetic albumin microspheres and as a solution was studied by monitoring adriamycin concentrations in multiple rat tissues for forty-eight hours after administration. The magnetic dosage form was targeted to a predefined tail segment with a magnetic field strength of 8000 G applied for 30 min after dosing. A physiological pharmacokinetic model was used to describe the disposition of adriamycin after both dosage forms. The model developed following adriamycin administration as a solution served as the foundation for the model for adriamycin when it was administered as the magnetic dosage form. Part II. The present investigation was designed to characterize the kinetics of ibuprofen in plasma and synovial fluid, which in the past, has been flawed by inadequate study protocols. After administration of a single dose and at steady-state, ibuprofen concentrations were measured simultaneously in plasma and synovial fluid obtained from eight patients with rheumatoid arthritis. The extent of accumulation of ibuprofen in each fluid was determined. The degree of ibuprofen protein binding in plasma and synovial fluid was also determined and related to its kinetic behavior.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectDrugs -- Dosage forms.en_US
dc.subjectDoxorubicin.en_US
dc.subjectAlbumins.en_US
dc.subjectPharmacokinetics.en_US
dc.titlePHARMACOKINETIC STUDIES OF ADRIAMYCIN DELIVERED VIA MAGNETIC ALBUMIN MICROSPHERES AND OF IBUPROFEN IN SYNOVIAL FLUID (TARGET, PHYSIOLOGICAL, ANIMAL).en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc697283366en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberMayersohn, Michaelen_US
dc.contributor.committeememberBlanchard, Jamesen_US
dc.contributor.committeememberChin, Lincolnen_US
dc.contributor.committeememberSipes, Glennen_US
dc.identifier.proquest8603339en_US
thesis.degree.disciplinePharmaceutical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2018-09-03T16:47:43Z
html.description.abstractPart I. Following a general historical review of the development of drug targeting, critical evaluations were made of current targeted drug delivery systems. Based on the results shown by previous studies, magnetic albumin microspheres containing adriamycin is one of the most promising targetable delivery systems for the treatment of solid tumors. It was also apparent that the pharmacokinetics of drugs associated with magnetic albumin microspheres had not been determined. A systematic study of the multiple variables involved in albumin microsphere preparation was completed to identify to what extent these variables affected the microsphere size distribution. The results of this investigation led to an optimal method of microsphere preparation. Information obtained from the above studies was applied to the production of magnetic albumin microspheres containing adriamycin suitable for in vivo use. The problems of separation and quantitation of adriamycin and adriamycinol in biological matrices were investigated using ion-pairing high pressure liquid chromatography. An optimized chromatographic system was presented for the analysis of these compounds in rat serum and tissues. The disposition of adriamycin following administration as magnetic albumin microspheres and as a solution was studied by monitoring adriamycin concentrations in multiple rat tissues for forty-eight hours after administration. The magnetic dosage form was targeted to a predefined tail segment with a magnetic field strength of 8000 G applied for 30 min after dosing. A physiological pharmacokinetic model was used to describe the disposition of adriamycin after both dosage forms. The model developed following adriamycin administration as a solution served as the foundation for the model for adriamycin when it was administered as the magnetic dosage form. Part II. The present investigation was designed to characterize the kinetics of ibuprofen in plasma and synovial fluid, which in the past, has been flawed by inadequate study protocols. After administration of a single dose and at steady-state, ibuprofen concentrations were measured simultaneously in plasma and synovial fluid obtained from eight patients with rheumatoid arthritis. The extent of accumulation of ibuprofen in each fluid was determined. The degree of ibuprofen protein binding in plasma and synovial fluid was also determined and related to its kinetic behavior.


Files in this item

Thumbnail
Name:
azu_td_8603339_sip1_w.pdf
Size:
6.258Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record