• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    SIMULATED ANNEALING AND ESTIMATION THEORY IN CODED-APERTURE IMAGING (RECONSTRUCTION, MONTE CARLO, WIENER FILTER).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8603355_sip1_w.pdf
    Size:
    8.694Mb
    Format:
    PDF
    Download
    Author
    SMITH, WARREN ESCHHOLZ.
    Issue Date
    1985
    Keywords
    Nuclear medicine -- Equipment and supplies.
    Imaging systems in medicine.
    Advisor
    Barrett, Harry
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Coded-aperture imaging without detector motion can be used to reconstruct three-dimensional radionuclide distributions in the context of nuclear medicine. This approach offers several advantages over the rotating gamma-ray camera systems presently employed in the clinic. These advantages include improved sensitivity, potentially better spatial resolution, and the capability of doing dynamic studies. There are two problems associated with the coded-aperture approach, however. First, the data is "multiplexed", which refers to the fact that many line integrals of the source distribution are combined together and not measured individually, so that information is lost. Second, the number of resolvable detector elements is typically an order of magnitude less than the number of object elements to be reconstructed, so that the reconstruction problem is underdetermined. Consequently, the reconstruction is not unique. By using various types of a priori information in forming the reconstruction, however, it is possible to augment the incomplete data set. Two algorithms are presented to reconstruct objects from their coded-image projections and various types of a priori information. The first, a Monte Carlo algorithm, is a flexible and computationally efficient approach using the a priori knowledge of positivity and nearest-neighbor correlation. This algorithm is used to qualitatively explore the effect of the data-taking geometry on reconstruction performance. The second algorithm is a linear estimator incorporating as a priori knowledge completely general first- and second-order statistical information about the object class to be reconstructed. The linear-estimator formalism also provides a minimum-variance expression for system optimization. This linear algorithm is used to explore the effects of correct and incorrect a priori information on reconstruction performance, and to quantitatively investigate reconstruction quality with respect to data-taking geometry.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.