• A Comparison of Three Cotton Tillage Systems

      Coates, Wayne E.; Thacker, Gary W.; Silvertooth, Jeff; Bantlin, Marguerite (College of Agriculture, University of Arizona (Tucson, AZ), 1991)
      Over a three year study, two reduced tillage systems used significantly less energy than conventional tillage. The Sundance system averaged 46% of the energy used by the conventional system, and the Uprooter-Shredder-Mulcher (USM) averaged 65% of the energy used by the conventional system. These energy savings translate directly into cost savings of about the same proportions. Additionally, the Sundance and USM systems can plow down and prepare the next seedbed in about one-half the time that conventional tillage requires. In three years of testing we have not detected any significant differences in soil compaction, and we have not measured any yield reductions from these reduced tillage systems.
    • Nitrogen Management Experiments for Upland and Pima Cotton, 1990

      Silvertooth, J. C.; Clark, L. J.; Malcuit, J. E.; Carpenter, E. W.; Doerge, T. A.; Watson, J. E.; Silvertooth, Jeff; Bantlin, Marguerite (College of Agriculture, University of Arizona (Tucson, AZ), 1991)
      Two field experiments were conducted in Arizona in 1990 at two locations ( Maricopa and Safford). The purposes of the experiments were to validate and refine nitrogen (N) fertilization recommendations for both Upland and Pima cotton. The experiments each utilized N management tools such as pre - season soil tests for NO₃⁻-N, in-season plant tissue testing (petioles) for N fertilirystatus, and crop monitoring to ascertain crop fruiting patterns and crop N needs. Results at both locations revealed a strong relationship between the crop fruit retention levels and N needs for the crop. This pattern was further reflected in final yield analysis in response to the N fertilization regimes used. At Maricopa, fruit retention levels were low, petiole NO₃⁻-N concentrations relatively high, and yield responses to higher and later applications of fertilizerN were negative. At Safford, fruit retention levels were higher, petiole concentrations of NO₃⁻-N reflected strong crop demand, and a positive response to rates of fertilizer N up to 170 lbs. N/acre was measured.
    • Upland and Pima Cotton Response to Banded Fertilizer Applications, 1990

      Silvertooth, J. C.; Thacker, G. W.; Malcuit, J. E.; Doerge, T. A.; Husman, S. H.; Silvertooth, Jeff; Bantlin, Marguerite (College of Agriculture, University of Arizona (Tucson, AZ), 1991)
      Two field experiments were established in Arizona in 1990 to evaluate the effects of banded phosphorus (P) fertilizer on cotton. Experiments involved both Upland (Gossvpium ltirsutum, L.) and American Pima (Q. barbadense L.). Banded applications of P fertilizerwere made with placement of the concentrated band of fertilizer 6 in. below and 3-6 in. to the side of the zone of seed placement. The P₂O₅ was supplied from 10-34-0. Rates of applied P ranged from 0 to 160 lb P₂O₅ /acre. In one experiment, treatments consisting of 5 to 10 lbs. Zn/acre were included in all possible combinations with the P₂O₅ treatments. In all cases, treatments in the field were arranged in a randomized complete block design with four replications. Plant measurements for plant height, flower numbers per unit area, number of mainstem nodes, and nodes to the first fruiting branch were initiated by the fifth true leaf stage to evaluate plant response in terms of growth and development. Plant tissue samples were also taken at several stages of growth from each experiment throughout the growing season. Tissue samples consisted of petioles from the uppermost fully - developed leaves. Petioles were analyzed for extractable PO₄-P. Lint yield measurements also were taken. No statistically significant differences (P ≤ 0.05) were found among any treatments for any of the plant growth parameters. The same was true with regard to petiole PO₄-P levels measured. No significant differences were detected among Upland or Pima cotton lint yields in response to the applications of P fertilizers.