• Marana Pima Test, 1997

      Hart, G. L.; Nelson, J. M.; Barney, Glen; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Nine pima cotton varieties were grown at Marana Agricultural Center as part of the national cotton variety testing program. Lint yield, boll size, lint percent, and plant population are presented in this report.
    • Pima Cotton Regional Variety Trial, Safford Agricultural Center, 1997

      Clark, L. J.; Carpenter, E. W.; Hart, G. L.; Nelson, J. M.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Sixteen long staple varieties were tested in a replicated small plot trial on the Safford Agricultural Center in Graham county at an elevation of 2950 feet. The highest yielding variety in 1997 was OA 325 with a yield of 746 pounds of lint per acre. It was followed by four other Olvey varieties yielding over 700 pounds per acre. 1997 was not a good Pima cotton year in this valley, weather problems early and insect problems late in the season both took their toll. Yields were more than 300 pounds lower than the previous year and 100 pounds less than in 1995. Yield and other agronomic data as well as fiber quality data are contained in this paper.
    • Infection of Sorghum Varieties by the Cotton Root-knot Nematode, Meloidogyne incognita

      McClure, M.; Husman, S.; Schmitt, M.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Twentythree varieties of sorghum, Sorghum bicolor, were evaluated for susceptibility to the cotton root -knot nematode, Meloidogyne incognita race 3. Eggs per gram of root were used as a measure of nematode reproduction and host susceptibility. The nematode reproduced on all varieties tested Mean egg counts were lowest on the varieties Northrup King (NK) KS-737, MF.; NK 1580,M; NK Ks-735 M.F.; NK 714Y MF.; NK Lt. Bronze X 609 M; Ciba-NK C-1506, M; and Pioneer 8877, but these varieties are still considered to be hosts capable of sustaining or increasing nematode populations in cotton fields. All varieties were better hosts than cotton.
    • Non-chemical Control of Cotton Seedling Damping-off in the Field

      Misaghi, I. J.; Heydari, A.; Zoki, K.; Silvertooth, Jeff; Department of Plant Pathology, University of Arizona (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      We conducted four field trials in April 1995 and 1996 in Arizona to compare the effectiveness of the following treatments to reduce cotton seedling damping-off incidence: 1) a soil drench of an isolate of the bacterium, Burkholderia cepacia (DI), recovered by us from cotton plants; 2) isolate D1 barley meal formulation; 3) Deny® seed treatment (a peat moss -based formulation of another isolate of B. cepacia, CCT Corp. Carlsbad, California); 4) Deny® soil drench; 5) Kodiak® seed treatment (a formulation of the bacterium, Bacillus subtilis, Gustafson Inc., Dallas, Texas); 6) a mixture of three fungicides Metalaxyl, Triadimenol, and Thiram seed treatment; and 7) a mixture of Metalaxyl, Triadimenol, Thiram, and Kodiak® seed treatment. Except for DI, the other products are being marketed for the control of cotton seedling damping-off Only DI soil drench and a mixture of the three fungicides seed treatment increased cotton stand significantly (P ≤ 0.05) in three of four field trials.
    • Lygus Chemical Control: Are Combinations Sprays Worth It?

      Ellsworth, Peter C.; Gibson, R.; Howell, D.; Husman, S.; Stedman, S.; Tickes, B.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      We need efficient sampling methods, appropriate thresholds based on a well -defined Lygus density yield relationship, and knowledge of the most effective chemical controls available. Insecticides were evaluated for control of Lygus at 5 'at risk' grower locations, as well as at 4 other experimental sites. Application methods were different at each site according to grower practice or experimental protocol (5-20 GPA; by ground, air, or electrostatically-assisted ground sprayers). Evaluations were made based on the number of Lygus per 100 sweeps. Orthene®, Vydate® or to a lesser degree, Monitor® used alone and at high rates appeared to perform adequately at all sites. Both rates of Regent™, a new chemistry under development by Rhône- Poulenc, provided excellent levels of control comparable to Orthene in a high density test. In this same test, none of the experimental and registered pyrethmids provided adequate control when used alone. Thiodan®, when mixed with Mustang®, provided some level of control. Over all tests measured for yield, a positive net return was possible with no more than 2 sprays of solo materials which yielded between 0.3 and 0.5 bales/A more than untreated comparisons or between $51-130/A net return. Also, at one site where yields were in excess of 4.2 bales/A, optimum planting and fruit-set prior to heavy Lygus pressures and monsoon-associated heat stress was an important cultural tactic for avoiding losses to Lygus - the check yielded over 3.7 bales /A! As seen at grower sites and confirmed in experimental studies, solo compounds, at appropriate rates, performed as well or better than any combination tested. And, mixtures at this time do not appear to provide any additive, synergistic or economic benefits in the control of Lygus. Combinations, unless indicated by another pest problem (e.g., whiteflies), are not "worth it," and needlessly expose the grower to larger input costs, "empty" applications, and higher risks of resistance, pest resurgence, secondary pest outbreaks, and phytotoxic effects by insecticides.
    • Irrigation Efficiencies and Lint Yields of Upland Cotton Growth at the Maricopa Agricultural Center, 1997

      Sheedy, Mike; Watson, Jack; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      A field trial was conducted at the Maricopa Agricultural Center to observe the effects of four irrigation efficiencies (65%, 75%, 85%, and 95%) on the lint yield produced from two upland cotton varieties (DP 5409 and SG 125). Nitrogen requirements for the crop were determined using pre- season soil samples and in season petiole samples in conjunction with crop monitoring data collected at weekly intervals. AZSCHED was used as a guide to the irrigation timing and amount of water applied during the season. This year there was a lint yield response to the different irrigation efficiencies, and a slight difference in yield between the two varieties. Lint yields were significantly lower in the 95% irrigation efficiency plots. Lint Yields ranged from 1448 # lint /acre (SG125 at 75%) to 1220 # lint/acre ( DP5409 at the 65% irrigation efficiency).
    • Correlation between Early Season Insecticide Control of Pink Bollworm and Other Pests and Subsequent Whitefly Applications near Gila Bend, AZ, 1997

      Jech, L. E.; Husman, S. H.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Cotton pesticide application histories in the Gila Basin were followed from 27 April through 20 September. The main interest was the effect of early season applications to control pink bollworm, Pectinophora gossypiella, and other pests on subsequent whitefly applications. Categories explored include, transgenic and non transgenic cotton, planting dates, and location within the valley. Regression analysis shows a significant effect due to the early season control for either P. gossypiella, or other pests (P > 0.009) but lower for them together (P > 0.026). Early applications for either PBW or other pest resulted in increased application for whitefly.
    • Comparison of the Two Methods for the Analysis of Petiole Nitrate Nitrogen Concentration in Irrigated Cotton

      Smith, J. H.; Silvertooth, J. C.; Norton, E. R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      A study was conducted in Arizona in 1997 with the objective of analyzing the accuracy of a recently developed portable nitrate meter (Cardy meter) to effectively measure petiole nitrate - nitrogen (NO₃-N) in irrigated cotton (Gossvpium sue.). This task was accomplished by performing correlation and linear regression analyses on NO₃-N concentrations of cotton petiole sap, as measured by the Cardy meter, against the standard procedure NO₃-N analysis, as measured by an ion selective electrode (ISE). Results revealed that the NO₃-N concentrations of petiole sap were highly correlated with dried petiole NO₃-N (pearson correlation coefficient = 0.96, P < 0.0001). A regression equation with an r² = 0.92 was derived: Y = 9.96X - 1170.86, where X and Y are NO₃-N in petiole sap (ppm) and dried petioles (ppm), respectively. These results suggest that the sap analysis using the Cardy meter is a potentially valuable tool to monitor the in-season N status of irrigated cotton.
    • Evaluation of a Feedback Approach to Nitrogen and Pix Applications, 1997

      Silvertooth, J. C.; Norton, E. R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      A single field experiment was conducted in 1997 at Marana, AZ to compare a scheduled approach (based on stage of growth) versus a feedback approach (based on growth parameters) to both nitrogen (N) and mepiquat chloride (P1X) applications on Upland cotton (Gossypium hirsutum L.). PIX feedback treatments were based upon fruit retention (FR) levels and height to node ratios (HNRs) with respect to established baselines for Arizona growing conditions. Scheduled and feedback FIX applications were made for a total of 0.75 and 1.50 pt./acre, respectively, with the scheduled treatments being initiated earlier in the fruiting cycle (early and peak bloom). Feedback PIX treatments consisted of a single 0.75 pt./acre application near peak bloom (approx. 2000 heat units after planting, HUAP, 86/55 °F threshold). Scheduled applications of fertilizer N totaled 150 lbs. N/acre from two applications and feedback N treatments received a total of 100 lbs. N/acre from two applications. Treatments consisted of all combinations of scheduled or feedback applications of both N and PIX. The highest lint yields were from treatments receiving PIX applications, with significant differences (P ≥ 0.05) between a check treatment (with no FIX applications) and several other treatments that did receive PIX applications. If FIX was applied, there were no significant differences between the scheduled or feedback approach. Applications of PIX in relation to increasing HNRs (feedback approach) are demonstrated and reinforced in this study.
    • Late Season Pink Bollworm Pressure in the Top Crop of Bt and Non-Bt Cotton

      Knowles, Tim C.; Dennehy, Tim J.; Rovey, Albert; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Green bolls (100/field) were sampled from the uppermost internodes within adjacent fields of Bt (Deltapine 33B) and non-Bt (Hyperformer HS 44) cotton experiencing severe pink bollworm pressure late in the growing season. Average top crop lint yield reductions ranging from 30 to 70% were observed in the uppermost bolls of the non-Bt cotton variety. Average top crop lint yield reductions ranging from 0 to 40% were observed in the uppermost bolls of the transgenic Bt cotton variety.
    • Efficacy of Experimental Insecticides for Whitefly Control in Cotton, 1997

      Kerns, David L.; Tellez, Tony; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Whitefly populations in this trial were abnormally low relative to previous years experiences. M-25 provided excellent whitefly control and was equivalent to the commercial standard (Knack followed by Danitol + Orthene). However, there is some question concerning its adult activity late in the season, when it appeared to be weaker than Danitol + Orthene and Capture + Curacron. At low whitefly populations Thiodan tank -mixed with Knack appeared to extend control over Knack alone.
    • Can Resistance to Chloronicotynl Insecticides be Averted in Arizona Field Crops?

      Williams, Livy III; Denney, Timothy J.; Palumbo, John C.; Silvertooth, Jeff; Department of Entomology, The University of Arizona; Extension Arthropod Resistance Management Laboratory, Tucson, AZ; Yuma Agricultural Center, Yuma, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      A resistance management program was initiated in Arizona in 1995, the initial goal of which was to sustain the efficacy of imidacloprid (Admire®) against Bemisia in vegetable crops. Due to the anticipated registration of additional chloronicotinyl (and related neonicotinyl) insecticides in Arizona, project objectives were subsequently broadened to address management of this entire class of insecticides in Arizona field crops. Results from three years of statewide monitoring of whiteflies from cotton indicated that whitefly populations in Arizona have become significantly less susceptible to imidacloprid in each of the past two years and significant geographical differences were described. However, no evidence was found of reduced field performance of imidacloprid in vegetables. Additionally, laboratory studies subjecting Arizona whiteflies to selection with imidacloprid did not increase levels of resistance beyond those occurring in the field. A study exploring the influence of cropping system differences on imidacloprid use (Admire® and Provado®) revealed no major differences in susceptibility to this insecticide between populations of whiteflies in central and southwestern Arizona. However, distinct seasonal shifts to lower susceptibility from 1996 to 1997 were observed in the Dome Valley of southwestern Arizona. Susceptibility of Arizona whitefly populations to imidacloprid was highly correlated with susceptibility to acetamiprid but was unrelated to susceptibility to CGA-293343. There is an urgent need to harmonize chemical use and resistance management efforts in Arizona cotton, vegetables and melons to avoid conflicts resulting from movement of pests between crops.
    • Voluntary Area-Wide Whitefly Monitoring Project Implementation 1995-1997, Gila Bend, AZ

      Husman, S. H.; Jech, L. E.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Growers, Pest Control Advisors (PCA), and University of Arizona Cooperative Extension personnel formulated and coordinated area-wide pest management strategies in the production area near Gila Bend, Az. from 1995-97. The primary pest target was whitefly with secondary control strategy implementation for pink bollworm in 1995. In 1995-1996, the coordinated effort encompassed approximately 10,000 and 6000 acres which included 10 and 8 cotton producers respectively and 6 pest control advisors. Due to producer interest and initiative in an adjoining production area, project acreage increased to over 18,000 acres and included 14 producers and 9 pest control advisors in 1997. The project cost of $3.00/acre was supported by participating producers with the monies used to hire University of Arizona trained students for field scouting of whiteflies. An economic development grant from the Electrical District #8 supported the project coordinator's salary who is a University of Arizona employee. Each field was sampled weekly for whitefly populations using recommended University of Arizona sampling procedure. The population data was then faxed to the responsible producer and pest control advisor on the date of sample. Treatment thresholds and chemistry class suggestions were made by Cooperative Extension with final control decisions and material choice at the producer and pest control advisor discretion. Weekly community wide meetings were conducted and used to discuss general area-wide and field specific population dynamics, treatment suggestions, crop condition, and agronomic and entomological area -wide production strategy recommendations.
    • Efficacy of Experimental Insecticides for Whitefly Control in Cotton, 1996

      Kerns, David L.; Tellez, Tony; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Experimental insecticides were evaluated for control of sweet potato whiteflies relative to a commercial standard in cotton. Ni-25 provided excellent whitefly control and was equivalent to the commercial standard (Knack followed by Danitol + Orthene). Fenoxycarb + pymetrozine provided goodwhitefly control but seemed to require 2 sequential applications before control was equivalent to Ni-25. Diofenolan + pymetrozine appeared to be a slightly weaker treatment, but still provided acceptable whitefly control.
    • 1997 Low Desert Upland Cotton Advanced Strains Testing Program

      Husman, S. H.; Silvertooth, J. C.; Clark, L.; Nelson, J.; Knowles, T.; Wegener, R.; Johnson, K.; Silvertooth, Jeff; University of Arizona Cooperative Extension (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Upland cotton advanced strains and commercial check comparison varieties were evaluated in replicated field studies at five locations in 1997. The test sites include Parker, Az., Gila Bend, Az., Buckeye, Az., Maricopa, Az., and Safford, AZ. Ten seed companies submitted a maximum of five advanced strains entries. Three commercial check varieties were used at each site for comparison purposes and included DPL 5415, SG 125, and STV 474.
    • Whitefly Management in Arizona: Contribution of Natural Enemies to Whitefly Mortality

      Naranjo, Steven E.; Ellsworth, Peter C.; Diehl, Jonathon W.; Silvertooth, Jeff; USDA-ARS, Western Cotton Research Laboratory, Phoenix, AZ; University of Arizona, Maricopa, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Direct-observation studies were conducted to identify causes and estimate rates of mortality of whiteflies over the course of four generations between late June to early September in replicated experimental plots. In plots receiving no whitefly insecticides. predation and dislodgment were major sources of egg and nymphal mortality and overall survival from egg to adult ranged from 1-8.5%. Similar patterns were observed in plots treated with insect growth regulators. except that Knack caused high levels of egg inviability and Applaud was a major source of mortality in small nymphs during the second generation immediately following single applications of these materials. Mortality due to predation was generally lowest for eggs and nymphs in plots treated with a rotation of conventional insecticides reflecting disruption of the predator fauna. Parasitism was a very minor source of mortality throughout. The selective action of the IGRs enhances the abundance and activity of natural enemies resulting in high levels of whitefly control with minimal use of disruptive insecticides. Natural enemies likely contribute to the "extended" residual effects of IGRs so commonly reported by growers.
    • Whitefly Management in Arizona: Looking at Whole Systems

      Ellsworth, P. C.; Naranjo, S. E.; Castle, S. J.; Hagler, J.; Henneberry, T. J.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Whiteflies remain a threat to production of cotton in Arizona. Looking at a series of commercial-scale trials, levels last season were delayed compared to previous years, but at higher densities than in 1995, an outbreak year. Efforts must be expended to optimize insect growth regulator (IGR) use and integrate these tactics with other aspects of crop and pest management. Broad spectrum insecticide use prior to treatment for whiteflies with IGRs alters the ecology of the system. Whitefly densities consistently increased after disruption with a Lygus insecticide relative to Lygus -untreated areas. While Lygus control is a production imperative, guidelines are presented for minimizing the impact of this disruption. The modes of action for the two IGRs differ substantially and result in subtle changes in population age structure and dynamics. The consequences of these changes impact natural enemies and should be noted by producers when selecting an IGR or monitoring populations after treatment. Re- treatment after initial IGR sprays depends on many factors. While apparently similar levels of suppression are possible when only one IGR is used, regimes using both available IGRs resulted in the fewest number of damaging large nymphs late in the season, just prior to defoliation. Conventional insecticides rotated according to pre-IGR introduction guidelines (`95IRM') also suppressed populations significantly and comparably to IGR regimes until late in the season. Then, whitefly densities rose aggressively just prior to defoliation and pyrethroid susceptibility was significantly reduced in the 951RM regime. Full adoption of IGR -based technology along with `Bt' cotton allows growers to better manage whiteflies with fewer disruptions which can lead to secondary pest outbreaks, pest resurgence, and insecticide resistance.
    • Whitefly Management in Arizona: Conservation of Natural Enemies Relative to Insecticide Regime

      Naranjo, Steven E.; Hagler, James R.; Ellsworth, Peter C.; Silvertooth, Jeff; USDA-ARS, Western Cotton Research Laboratory, Phoenix, AZ; University of Arizona, Maricopa, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Field studies were conducted in 1997 to evaluate strategies for management of whitefly (Bemisia tabaci). We evaluated the effects of different insecticide regimes (conventional and insect growth regulators [IGR]) on the abundance of native parasitoids and predators associated with whitefly in Arizona cotton. Immature parasitoids were most abundant in untreated control plots and there was little difference among insecticide regimes. Percentage parasitism was low overall (< 30 %), but was highest in Knack plots and lowest in untreated control and Applaud plots. Predator populations were lowest in plots treated with conventional insecticides, and there were several instances where weekly or season -long populations of several predator species/groups were slightly depressed in IGR plots compared with the untreated check. Overall, results are encouraging and indicate that use of IGRs helps to conserve populations of native natural enemies.
    • Survey of Cotton Weeds and Weed Control Practice in Arizona Upland Cotton Fields

      McCloskey, William B.; Baker, Paul B.; Sherman, Will; Silvertooth, Jeff; Department of Plant Sciences, University of Arizona, Tucson, AZ; Department of Entomology, University of Arizona, Tucson, AZ; National Agricultural Statistics Service, USDA, Phoenix, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      The distribution of weed species and the herbicides and cultural practices used to control weeds in Arizona cotton fields were surveyed in 1995 and 1996. The most common weeds were purple nutsedge, bermudagrass, annual morningglory, Palmer amarnath, Wright groundcherry, common purselane, yellow nutsedge and Johnsongrass. The average statewide cost for hand weeding in 1995 was reported as $27.87 per acre in addition to other weed control costs. Statewide, most growers used preemergence herbicides before or at planting and used pre- and post-emergence herbicides later in the season. Most of these applications were broadcast applications suggesting that many of the postemergence herbicide applications were layby applications. Preemergence herbicides (usually applied preplant incorporated) such as Treflan, Prowl, and Prometryn were more commonly used than postemergence herbicides. Statewide, few growers banded preemergence herbicides or used electro- hydraulic quick-hitch guidance systems and in-row weeding tools with their cultivators.
    • Effects of Cotton Ginning and Lint Cleaning on Sticky Cotton

      Henneberry, T. J.; Hendrix, D. L.; Perkins, H. H.; Silvertooth, Jeff; USDA, ARS Western Cotton Research Laboratory, Phoenix AZ; USDA, ARS, Cotton Quality Research, Clemson, SC (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Ginning and lint cleaning effects on cotton stickiness were minimal but reduced amounts of trehalulose and reduced thermodetector counts occurred following each lint process Leaf trash from ginned seed cotton contained trehalulose and melezitose. Removal of leaf trash in ginning and lint cleaning probably accounts for some reduced lint stickiness.