• Side-dress Temik® Effects on Lint Yields

      Husman, Stephen H.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Temik 15G was side-dressed at a rate of 7 lb./acre and 14 lb./acre and compared to an untreated check in 4 experiments in 1996 and 1997 in Buckeye, Az. Treatments were made just prior to early bloom. Lygus counts were taken using a sweep net on weekly intervals for four to six weeks post application. A net positive return on investment (ROI) ranging from $34.79/acre to $48.19/acre was realized in three of the four experiments with the seven lb./acre rate. One experiment resulted in a net economic loss of $24.84. A net positive ROI was experienced in two of the four experiments ranging from $23.31 to $50.11 using the fourteen lb./acre Temik rate. Two of the four experiments resulted in a net loss ranging from $28.28 to $93.27 using the fourteen lb./acre rate. It appears that lint yield increase responses are due in part to a plant response to Temik, not necessarily related to lygus density as evidenced in part by the lack of measured sweep count populations.
    • Systemic Insecticide Applications at Planting and First Square in Bt Cotton for Early Season Insect Control - La Paz and Mohave Counties

      Knowles, Tim C.; Keavy, Mike; Wakimoto, Victor; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Temik 15G (6 lbs/acre) and Thimet 20G (7.5 lbs/acre) granular insecticides were applied in furrow at planting and compared to an untreated check in two experiments in Parker Valley and Mohave Valley, AZ. At first square each of these main plots was split in half and either Temik 15G or DiSyston 8L was sidedressed to each subplot and compared to an untreated strip. Thrips and lygus counts were taken at weekly or biweekly intervals and plant response measured from the 2 or 3 leaf stage through layby. Under the thrips pressure experienced in these two experiments (0.5-1.5/plant), Temik and Thimet at planting provided similar and adequate protection from thrips for up to 7 weeks following application. Temik 15G sidressed at 14 lbs/acre at first square provided lygus bug control for up to 42 days following application under light lygus bug pressure (5-15/100 sweeps). Di- Syston 8L sidedressed at 1 qt/acre at first square provided lygus bug control for 35 days following application under moderate lygus bug pressure (15-20/100 sweeps). Under the conditions of this study, systemic insecticide applications at planting and first square did not increase cotton lint yields of insecticide treated Bt cotton plots, compared to the untreated control plots.
    • New Insights Regarding Estimating Lygus Susceptibility to Insecticides

      Dennehy, T. J.; Russell, J. E.; Antilla, L.; Whitlow, M.; Silvertooth, Jeff; Extension Arthropod Resistance Management Laboratory; Department of Entomology, University of Arizona, Tucson, AZ; Arizona Cotton Research & Protection Council, Tempe, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Lygus susceptibility was found to vary widely from year to year, from region to region and, for some insecticides, even within the season. It is for this reason that producers need current, region-specific recommendations in order to determine which insecticides are most effective at their locale. Our studies were intended to improve understanding of the reliability of glass vial bioassays for estimating efficacy of insecticides used against lygus bugs. Results show that the standard glass vial method offers considerable promise for detecting differences in susceptibility of lygus to some, but not all, insecticides. However, mortality in vial bioassays did not serve as a reliable predictor of the relative toxicity of residues of five insecticides in field treatments. Therefore, field evaluations of insecticide efficacy continue to be essential for selecting the insecticides that provide the best control of lygus. Once the most effective materials are selected from field trial results, bioassays can be used to efficiently monitor changes in population susceptibility to these insecticides. Additional new insights provided by our studies are that efficacy of residues of insecticides declined rapidly, such that after three days all insecticides caused very little mortality to adult lygus bugs. Lastly, we found a marked difference between residual and direct contact toxicity of the five insecticides evaluated. Even the insecticide treatments that resulted in relatively low toxicity in residual exposure tests killed 95-100% of lygus bugs that they contacted directly under field conditions. This finding indicates that producers experiencing severe problems with lygus control would be well advised to improve insecticide coverage.
    • Efficacy of Experimental Insecticides for Insect Control in Cotton Grown in the Low Desert Region of Arizona, 1997

      Kerns, David L.; Tellez, Tony; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Experimental insecticides were evaluated for control of lygus bugs relative to commercial standards in cotton. These products were also evaluated for activity towards whiteflies and pink bollworms. CGA293343 was not effective when used as a side-dress material at layby, but was effective toward whiteflies, and towards lygus at higher foliar rates. Regent, Vydate and Mustang + Thiodan were highly effective for lygus control, while EXP61096A and Mustang alone performed poorly. Against whiteflies, CGA293343, Acetamiprid, and Mustang + Thiodan were most efficacious, while Mustang alone and with Thiodan were most effective towards pink bollworms.
    • Lygus Chemical Control: Are Combinations Sprays Worth It?

      Ellsworth, Peter C.; Gibson, R.; Howell, D.; Husman, S.; Stedman, S.; Tickes, B.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      We need efficient sampling methods, appropriate thresholds based on a well -defined Lygus density yield relationship, and knowledge of the most effective chemical controls available. Insecticides were evaluated for control of Lygus at 5 'at risk' grower locations, as well as at 4 other experimental sites. Application methods were different at each site according to grower practice or experimental protocol (5-20 GPA; by ground, air, or electrostatically-assisted ground sprayers). Evaluations were made based on the number of Lygus per 100 sweeps. Orthene®, Vydate® or to a lesser degree, Monitor® used alone and at high rates appeared to perform adequately at all sites. Both rates of Regent™, a new chemistry under development by Rhône- Poulenc, provided excellent levels of control comparable to Orthene in a high density test. In this same test, none of the experimental and registered pyrethmids provided adequate control when used alone. Thiodan®, when mixed with Mustang®, provided some level of control. Over all tests measured for yield, a positive net return was possible with no more than 2 sprays of solo materials which yielded between 0.3 and 0.5 bales/A more than untreated comparisons or between $51-130/A net return. Also, at one site where yields were in excess of 4.2 bales/A, optimum planting and fruit-set prior to heavy Lygus pressures and monsoon-associated heat stress was an important cultural tactic for avoiding losses to Lygus - the check yielded over 3.7 bales /A! As seen at grower sites and confirmed in experimental studies, solo compounds, at appropriate rates, performed as well or better than any combination tested. And, mixtures at this time do not appear to provide any additive, synergistic or economic benefits in the control of Lygus. Combinations, unless indicated by another pest problem (e.g., whiteflies), are not "worth it," and needlessly expose the grower to larger input costs, "empty" applications, and higher risks of resistance, pest resurgence, secondary pest outbreaks, and phytotoxic effects by insecticides.
    • Integrated Lygus Management in Arizona

      Ellsworth, Peter C.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Integrated Lygus management depends on the same fundamentals of management for any pest. There needs to be a system of monitoring (sampling), understanding of the density-yield relationship (thresholds) and other insecticide optimization practices (e.g., resistance management), and a plan for reducing the chance of infestation and need for remedial measures (avoidance). While all these guidelines are under current study, current recommendations represent a fundamental base on which to build an integrated Lygus management program that will also manage for susceptibility to our current insecticides. Key to this sustainable susceptibility system is limiting insecticide use to the lowest practical levels. This is best accomplished by careful sampling, careful assessment of thresholds and selection of the right compound for the job, but, most of all, avoidance of the problem from the start. Current recommendations are detailed below in light of the most recent research findings.
    • Effects of Cotton Ginning and Lint Cleaning on Sticky Cotton

      Henneberry, T. J.; Hendrix, D. L.; Perkins, H. H.; Silvertooth, Jeff; USDA, ARS Western Cotton Research Laboratory, Phoenix AZ; USDA, ARS, Cotton Quality Research, Clemson, SC (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Ginning and lint cleaning effects on cotton stickiness were minimal but reduced amounts of trehalulose and reduced thermodetector counts occurred following each lint process Leaf trash from ginned seed cotton contained trehalulose and melezitose. Removal of leaf trash in ginning and lint cleaning probably accounts for some reduced lint stickiness.
    • Seasonal Distribution of Bemesia Honeydew Sugars on Pima and Upland Cotton Lint

      Henneberry, T. J.; Forlow Jech, L.; Hendrix, D. L.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Bemisia argentifolii Bellows and Perring populations were higher on Pima S-7 cotton compared with DPL 50 cotton. Higher numbers of mature open cotton bolls occurred earlier for DPL 50 compared with Pima S-7. Also, numbers of open bolls for DPL 50 peaked 8 to 14 days before Pima S-7 and decreased dramatically by 15 September reflecting termination of the first fruiting cycle in August In contrast the indeterminate fruiting pattern of Pima S-7 showed that numbers of open bolls per week declined gradually after the peak without a clear cut termination occurrence. About 95 and 80% of the open cotton bolls, of the Deltapine and Pima S-7 cottons, respectively, occurred by mid- September. This suggests that defoliation timing and early harvest can be important management tools to avoid sticky cotton. For upland cotton, extending the cotton season after 95% of the crop matured (≅ 15 September) resulted in development from non - sticky cotton to lightly- sticky cotton within 21 days following the occurrence of increasing whitefly populations after 15 September. Later fruiting and lack of a distinct end of the first cotton fruiting cycle probably precludes using early defoliation for long -staple Pima cotton. At harvest, thermodetector counts for all weekly harvests were greater than amounts found in lint for randomly selected 20 boll samples; and samples from all cotton picked from 4 m of row. This probably occurred because weekly picked cotton escaped rainfall and exposure and other weathering, in 1995 but not 1996, and machine - picked cotton contains more honeydew- contaminated leaf trash. Except in one instance, thermodetector counts and trehalulose and melezitose content in lint for all sampling methods were significantly correlated.
    • Efficacy of Experimental Insecticides for Whitefly Control in Cotton, 1997

      Kerns, David L.; Tellez, Tony; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Whitefly populations in this trial were abnormally low relative to previous years experiences. M-25 provided excellent whitefly control and was equivalent to the commercial standard (Knack followed by Danitol + Orthene). However, there is some question concerning its adult activity late in the season, when it appeared to be weaker than Danitol + Orthene and Capture + Curacron. At low whitefly populations Thiodan tank -mixed with Knack appeared to extend control over Knack alone.
    • Efficacy of Experimental Insecticides for Whitefly Control in Cotton, 1996

      Kerns, David L.; Tellez, Tony; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Experimental insecticides were evaluated for control of sweet potato whiteflies relative to a commercial standard in cotton. Ni-25 provided excellent whitefly control and was equivalent to the commercial standard (Knack followed by Danitol + Orthene). Fenoxycarb + pymetrozine provided goodwhitefly control but seemed to require 2 sequential applications before control was equivalent to Ni-25. Diofenolan + pymetrozine appeared to be a slightly weaker treatment, but still provided acceptable whitefly control.
    • Silverleaf Whitefly Cotton Cultivator Preference

      Chu, C. C.; Natwick, E. T.; Henneberry, T. J.; Cohen, A. C.; Castle, S. J.; Silvertooth, Jeff; USDA-ARS, Western Cotton Research Laboratory (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      All of nine cotton cultivars tested were susceptible to silverleaf whitey, Bemisia argentifolii Bellows and Perring in Imperial valley, CA in 1995 and 1996. Using 4.1 adults per leaf turn as an insecticide- treatment action threshold, Deltapine (DPL) 5409 and 5415 required 5.5 applications of insecticide, DPL 50, 5461, and 5517 required 6 applications, DPL 5432 and 5690 required 65 applications, Louisiana (LA) 887 required 7 application, and Stoneville (ST) 474 required 7.5 applications. Results indicate the potential to reduce insecticide application by selecting appropriate cultivars that are commercially available.
    • Voluntary Area-Wide Whitefly Monitoring Project Implementation 1995-1997, Gila Bend, AZ

      Husman, S. H.; Jech, L. E.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Growers, Pest Control Advisors (PCA), and University of Arizona Cooperative Extension personnel formulated and coordinated area-wide pest management strategies in the production area near Gila Bend, Az. from 1995-97. The primary pest target was whitefly with secondary control strategy implementation for pink bollworm in 1995. In 1995-1996, the coordinated effort encompassed approximately 10,000 and 6000 acres which included 10 and 8 cotton producers respectively and 6 pest control advisors. Due to producer interest and initiative in an adjoining production area, project acreage increased to over 18,000 acres and included 14 producers and 9 pest control advisors in 1997. The project cost of $3.00/acre was supported by participating producers with the monies used to hire University of Arizona trained students for field scouting of whiteflies. An economic development grant from the Electrical District #8 supported the project coordinator's salary who is a University of Arizona employee. Each field was sampled weekly for whitefly populations using recommended University of Arizona sampling procedure. The population data was then faxed to the responsible producer and pest control advisor on the date of sample. Treatment thresholds and chemistry class suggestions were made by Cooperative Extension with final control decisions and material choice at the producer and pest control advisor discretion. Weekly community wide meetings were conducted and used to discuss general area-wide and field specific population dynamics, treatment suggestions, crop condition, and agronomic and entomological area -wide production strategy recommendations.
    • Can Resistance to Chloronicotynl Insecticides be Averted in Arizona Field Crops?

      Williams, Livy III; Denney, Timothy J.; Palumbo, John C.; Silvertooth, Jeff; Department of Entomology, The University of Arizona; Extension Arthropod Resistance Management Laboratory, Tucson, AZ; Yuma Agricultural Center, Yuma, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      A resistance management program was initiated in Arizona in 1995, the initial goal of which was to sustain the efficacy of imidacloprid (Admire®) against Bemisia in vegetable crops. Due to the anticipated registration of additional chloronicotinyl (and related neonicotinyl) insecticides in Arizona, project objectives were subsequently broadened to address management of this entire class of insecticides in Arizona field crops. Results from three years of statewide monitoring of whiteflies from cotton indicated that whitefly populations in Arizona have become significantly less susceptible to imidacloprid in each of the past two years and significant geographical differences were described. However, no evidence was found of reduced field performance of imidacloprid in vegetables. Additionally, laboratory studies subjecting Arizona whiteflies to selection with imidacloprid did not increase levels of resistance beyond those occurring in the field. A study exploring the influence of cropping system differences on imidacloprid use (Admire® and Provado®) revealed no major differences in susceptibility to this insecticide between populations of whiteflies in central and southwestern Arizona. However, distinct seasonal shifts to lower susceptibility from 1996 to 1997 were observed in the Dome Valley of southwestern Arizona. Susceptibility of Arizona whitefly populations to imidacloprid was highly correlated with susceptibility to acetamiprid but was unrelated to susceptibility to CGA-293343. There is an urgent need to harmonize chemical use and resistance management efforts in Arizona cotton, vegetables and melons to avoid conflicts resulting from movement of pests between crops.
    • 1997 Season Update on Resistance of Arizona Whiteflies to Synergized Pyrethroid and Select Non-Pyrethroid Insecticides

      Dennehy, Timothy J.; Williams, Livey III; Li, Xiaohua; Wigert, Monika; Silvertooth, Jeff; Department of Entomology, The University of Arizona; Extension Arthropod Resistance Management Laboratory, Tucson, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      A whitefly resistance crisis in Arizona in 1995 prompted the development of a resistance management strategy in 1996 that recommended maximal once per season use of two insect growth regulators, pyriproxyfen (Knack®) and buprofezin (Applaud®), and limited and delayed use of synergized pyrethroid insecticides in cotton. Statewide monitoring of whitefly resistance has shown that implementation of this strategy has substantially reduced whitefly resistance to the synergized pyrethroids and has also resulted in increased susceptibility to key non pyrethroid insecticides. Having benefited from two years of success with this strategy, the Arizona cotton industry now faces the question of whether it can be sustained as pyriproxyfen and buprofezin gain additional registrations for use against whiteflies in vegetables, melons and glasshouse crops.
    • Whitefly Management in Arizona: Conservation of Natural Enemies Relative to Insecticide Regime

      Naranjo, Steven E.; Hagler, James R.; Ellsworth, Peter C.; Silvertooth, Jeff; USDA-ARS, Western Cotton Research Laboratory, Phoenix, AZ; University of Arizona, Maricopa, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Field studies were conducted in 1997 to evaluate strategies for management of whitefly (Bemisia tabaci). We evaluated the effects of different insecticide regimes (conventional and insect growth regulators [IGR]) on the abundance of native parasitoids and predators associated with whitefly in Arizona cotton. Immature parasitoids were most abundant in untreated control plots and there was little difference among insecticide regimes. Percentage parasitism was low overall (< 30 %), but was highest in Knack plots and lowest in untreated control and Applaud plots. Predator populations were lowest in plots treated with conventional insecticides, and there were several instances where weekly or season -long populations of several predator species/groups were slightly depressed in IGR plots compared with the untreated check. Overall, results are encouraging and indicate that use of IGRs helps to conserve populations of native natural enemies.
    • Whitefly Management in Arizona: Looking at Whole Systems

      Ellsworth, P. C.; Naranjo, S. E.; Castle, S. J.; Hagler, J.; Henneberry, T. J.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Whiteflies remain a threat to production of cotton in Arizona. Looking at a series of commercial-scale trials, levels last season were delayed compared to previous years, but at higher densities than in 1995, an outbreak year. Efforts must be expended to optimize insect growth regulator (IGR) use and integrate these tactics with other aspects of crop and pest management. Broad spectrum insecticide use prior to treatment for whiteflies with IGRs alters the ecology of the system. Whitefly densities consistently increased after disruption with a Lygus insecticide relative to Lygus -untreated areas. While Lygus control is a production imperative, guidelines are presented for minimizing the impact of this disruption. The modes of action for the two IGRs differ substantially and result in subtle changes in population age structure and dynamics. The consequences of these changes impact natural enemies and should be noted by producers when selecting an IGR or monitoring populations after treatment. Re- treatment after initial IGR sprays depends on many factors. While apparently similar levels of suppression are possible when only one IGR is used, regimes using both available IGRs resulted in the fewest number of damaging large nymphs late in the season, just prior to defoliation. Conventional insecticides rotated according to pre-IGR introduction guidelines (`95IRM') also suppressed populations significantly and comparably to IGR regimes until late in the season. Then, whitefly densities rose aggressively just prior to defoliation and pyrethroid susceptibility was significantly reduced in the 951RM regime. Full adoption of IGR -based technology along with `Bt' cotton allows growers to better manage whiteflies with fewer disruptions which can lead to secondary pest outbreaks, pest resurgence, and insecticide resistance.
    • Late Season Pink Bollworm Pressure in the Top Crop of Bt and Non-Bt Cotton

      Knowles, Tim C.; Dennehy, Tim J.; Rovey, Albert; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Green bolls (100/field) were sampled from the uppermost internodes within adjacent fields of Bt (Deltapine 33B) and non-Bt (Hyperformer HS 44) cotton experiencing severe pink bollworm pressure late in the growing season. Average top crop lint yield reductions ranging from 30 to 70% were observed in the uppermost bolls of the non-Bt cotton variety. Average top crop lint yield reductions ranging from 0 to 40% were observed in the uppermost bolls of the transgenic Bt cotton variety.
    • Effects of Entomopathogentic Nematodes on Pink Bollworm Mortality

      Henneberry, T. J.; Forlow Jech, L.; Burke, R. A.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Steinernema riobravis Cabanillas, Poinar & Raulston infected pink bollworm Pectinophora gossypiella (Saunders), larvae over a temperature range of 15.6 - 38.0° C. Temperatures of 32.2° C and higher and exposure for 48 h or more often resulted in decreased numbers of nematode killed larvae with living nematodes and increased numbers of dead larvae with dead or no nematodes.
    • Correlation between Early Season Insecticide Control of Pink Bollworm and Other Pests and Subsequent Whitefly Applications near Gila Bend, AZ, 1997

      Jech, L. E.; Husman, S. H.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Cotton pesticide application histories in the Gila Basin were followed from 27 April through 20 September. The main interest was the effect of early season applications to control pink bollworm, Pectinophora gossypiella, and other pests on subsequent whitefly applications. Categories explored include, transgenic and non transgenic cotton, planting dates, and location within the valley. Regression analysis shows a significant effect due to the early season control for either P. gossypiella, or other pests (P > 0.009) but lower for them together (P > 0.026). Early applications for either PBW or other pest resulted in increased application for whitefly.
    • Efficacy of Insecticides for Pink Bollworm and Cotton Leaf Perforator Control in Cotton Grown in the Low Desert Region of Arizona, 1997

      Kerns, David L.; Tellez, Tony; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1998-04)
      Neither Tracer nor Proclaim appeared to be effective pink bollworm materials whether applied at day or night. However against cotton leafperforator, both Tracer and Proclaim provided sufficient control. Although all three formulations of Karate equally provided statistically significant pink bollworm control, it was not commercially acceptable. Shortening the spray interval from 7 to 4 days may have helped alleviate this problem. None of the Karate formulations evaluated appeared to offer outstanding cotton leafperforator control.