• Pima Cotton Regional Variety Trial, Safford Agricultural Center, 1998

      Clark, Lee J.; Carpenter, E. W.; Hart, G. L.; Nelson, J. M.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      Sixteen long staple varieties were tested in a replicated small plot trial on the Safford Agricultural Center in Graham county at an elevation of 2950 feet. The highest yielding variety in this study was OA 340 with a yield of 1021 pounds of lint per acre. It was followed by two other Olvey varieties yielding over 900 pounds per acre, including OA 322 and OA 361 (White Pima). In the adjacent regional short staple cotton trial were three interspecific hybrids from Hazera, an Israeli Seed Company. These hybrids grew like short staple cotton, but the fiber was more like the barbadense parent. These hybrids yielded from 1146 to 1091 pounds per acre. Their data is included at the bottom of the tables for comparison with the other long staple variety values. Yield and other agronomic data as well as fiber quality data are contained in this paper.
    • Arizona Upland Cotton Variety Testing Program, 1998

      Silvertooth, Jeffrey C.; Norton, Randy; Clark, L.; Walser, R.; Husman, Stephen H.; Knowles, Tim; Moser, H.; Silvertooth, Jeff; University of Arizona Cooperative Extension (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      Ten field experiments were conducted in major cotton growing areas of Arizona in 1998 for the purpose of evaluating Upland cotton varieties in terms of adaptability and performance. Eight commercial cottonseed companies participated in the program. A maximum of two varieties were submitted by each company at each location. Experiments were conducted on a commercial level on grower-cooperator fields in most cases. Locations used in the program spanned the range of conditions common to cotton producing areas of the state from about 100 ft. to 4,000 ft. elevation. Each of the participating seed companies offer a compliment of varieties that can serve to match various production strategies commonly employed in the state. The 1998 cotton season was a very difficult one for many cotton producing areas in AZ below ~2,000 ft. elevation, characterized by a cool wet spring, late planting, a delayed crop, and a strong monsoon season that reduced fruit retention in many cases. Many varieties commercially available performed well at several locations demonstrating good adaptation to Arizona conditions.
    • EUP Evaluation of a Novel Insecticide for Lygus Control

      Ellsworth, Peter C.; Deeter, Brian; Whitlow, Mike; Silvertooth, Jeff; The University of Arizona, Department of Entomology & Maricopa Agricultural Center; Rhône-Poulenc Company, Fresno, CA; Arizona Cotton Research & Protection Council (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      Lygus became the number one pest of cotton in 1998 with statewide losses of over $16 million in spite of individual costs to the grower of over $55/A for control. Selective technologies for whitefly and pink bollworm control reduce the number of broad spectrum sprays that incidentally control Lygus. Control of Lygus depends mainly on just two related chemical classes of insecticides, organophosphates and carbamates. Over reliance on such a limited diversity of chemical controls increases the risk of resistance. Further, FQPA threatens the future availability of many of our main stay chemical controls. The study reported here sought to investigate the commercial suitability of a new compound, Regent®, for the control of Lygus. This novel mode of action represents one of the few potential new tools under development for Lygus management. Under a federal Emergency Use Permit (EUP), Regent was tested against two standards of Lygus control (Orthene® and Vydate®) and an untreated check. In a test of unusually high Lygus densities, Regent provided excellent control of small (instars 1–3) and large (instars 4–5) Lygus nymphs and may provide marginally better control of adults than current standards. None of the tested agents provided quick control or knockdown of adults. Rather, adult levels were reduced over time, most likely as a result of prevention of the development of new adults via nymphal control. All three materials protected cotton producing yields significantly higher than the check. The Orthene treatment had the highest yield, though not significantly higher than the Regent treatment which was effectively sprayed one less time than the other compounds.
    • Narrow Row Cotton Production in Vicksberg

      Knowles, Tim C.; Cramer, Roc; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      Deltapine 458B/RR, Deltapine 5415RR, Deltapine 20B, and Deltapine 20 cotton varieties were planted on June 5 into narrow 15 inch wide rows. Populations ranged from 80,000 to 100,000 plants per acre. Seed cotton was stripper harvested on December 17. Although lint yields were somewhat low (1- 2 bale/acre) for this late planted cotton, we learned several important practices for effective narrow row cotton production systems, based on our first years experience in western Arizona.
    • Evaluation of a Feedback Approach to Nitrogen and Pix Applications, 1998

      Norton, E. J.; Silvertooth, Jeffrey C.; Norton, Eric R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      A single field experiment was conducted in 1998 at Marana, AZ to evaluate a scheduled (based upon stage of growth) versus a feedback approach (based upon growth parameters and crop conditions) to nitrogen (N) and mepiquat chloride (PixTM) applications on upland cotton (Gossypium hirsutum L.). The parameters used in evaluating feedback applications for both N and Pix included fruit retention (FR) levels and height to node ratios (HNRs) with respect to established baselines for cotton grown in the desert Southwest. Scheduled and feedback Pix applications were made for a total of 1.5 and 2.5 pint Pix/acre, respectively, with the feedback treatments receiving a late season application at approximately 3100 heat units after planting (HUAP 86/550 F threshold). Scheduled Pix treatments received a single 1.5 pint Pix/acre application prior to peak bloom (approximately 2000 HUAP). Scheduled applications of fertilizer N totaled 205 lbs. N/acre from three applications. Feedback applications of N received a total of 100 lbs. N/acre from two applications. Treatments consisted of all combinations of feedback and scheduled applications of both N and Pix. The highest lint yields occurred in the treatment consisting of Pix feedback and N feedback (treatment two), however, there were no significant differences (P≥0.05) among any of the treatments with respect to yield.
    • Preplant Micronutrient Fertilizers for Cotton

      Knowles, Tim C.; Artz, Paul; Sherrill, Chip; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      Micronutrient fertilizers including zinc, boron, copper, and manganese in their sulfate forms were broadcast applied and incorporated preplant to determine their effects on lint yield of upland cotton.
    • Development of a Yield Projection Technique for Arizona Cotton

      Norton, Eric R.; Silvertooth, Jeffrey C.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      A series of boll measurements were taken at numerous locations in cotton producing areas across Arizona in 1998 in an attempt to continue to develop a yield prediction model with a project that began in 1993. Results from 1995 showed the strongest relationship between final open boll counts and yield compared to a number of other measurements. Based on these results, data collection on boll counts began in 1996 and has continued in 1997 and 1998. Boll counts were taken as the number of harvestable bolls meter-1. All boll count measurements were made within one week of harvest. Number of bolls per unit area were then correlated to lint yield and an estimate for the number of bolls per area needed to produce a bale of lint was calculated. Estimates using all three years data combined indicate that approximately 38 bolls meter-1 are needed to produce one bale of lint per acre.
    • Short Staple Variety Trials, Graham County, 1998

      Clark, Lee J.; Carpenter, E. W.; Walser, R. H.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      Two replicated on-farm short staple variety trials were planted in 1998. Fifteen varieties were evaluated on both the Carpenter farm in Thatcher and the Colvin farm near Ft. Thomas. Several new varieties were planted in both studies, including 4 transgenic varieties: DP 90B, BXN 47, DP 90RR and Paymaster 1560BG, 2 varieties from Australia: FiberMax 989 and FiberMax 832, and seven other varieties seen for the first time. Two of the new varieties produced the highest yields; AgriPro 6101 and Phytogen 952 on the Carpenter and Colvin farms, respectively. Other agronomic data from the varieties and HVI values from the lint are also included in this report.
    • 1998 Low Desert Upland Cotton Advanced Strains Testing Program

      Husman, Stephen J.; Wegener, R.; Johnson, K.; Silvertooth, Jeff; University of Arizona Cooperative Extension (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      Upland cotton advanced strains and commercial check comparison varieties were evaluated in replicated field studies at three locations in 1998. The test sites include Buckeye, Az., Maricopa, Az., and Safford, AZ. Twelve seed companies submitted a maximum of five advanced strains entries per location. Three commercial check varieties were used at each site for comparison purposes and included DPL 5415, SG 125, and STV 474.
    • Cotton Defoliation Evaluations, 1998

      Silvertooth, Jeffrey C.; Norton, Eric R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      A field experiment was conducted near Marana, AZ in 1998 to evaluate the effectiveness of a number of defoliation treatments on Upland (var. Stoneville 474) cotton.. All treatments consisted of materials commercially available in Arizona. Results reinforce general recommendations regarding the use of low rates (relative to the label ranges) under warm weather conditions and increasing rates as temperatures cool. Defoliation treatments of Ginstar alone did a satisfactory job of defoliation and regrowth/topgrowth contol and were very similar to Dropp + Def combination treatments. Adding Prep to Ginstar in this experiment did not improve defoliation or topgrowth control.
    • Fertility Management and Calibration Evaluations on Upland and Pima Cotton

      Thelander, A. S.; Silvertooth, Jeffrey C.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      Various field experiments were conducted during the 1997 and 1998 cotton season involving macro and micronutrient fertilization. A total of six experiments were conducted at various locations in Arizona. Each of the field experiments studied the effects of different nutrients and nutrient combinations on both Upland and Pima varieties. The purpose of these experiments were to evaluate University of Arizona fertility guidelines with respect to soil test results and to possibly fine-tune or calibrate these guidelines for common Arizona soils and cotton growing regimes. Results from these experiments based on soil test information, quantitative plant measurements, and lint yield showed no significant difference due to treatments for all the studies except for a phosphorus study conducted in Graham County.
    • Preliminary Evaluation of the "Next Generation" of Bt Cotton

      Sieglaff, D. H.; Ellsworth, Peter C.; Silvertooth, Jeffrey C.; Hamilton, E.; Silvertooth, Jeff; The University of Arizona, Department of Entomology & Maricopa Agricultural Center; Department of Plant Sciences; Monsanto Company, Chesterfield, MO (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      The next generation of Bollgard® cotton was evaluated for agronomic and insecticidal efficacy under central Arizona growing conditions. Two novel lines were compared with their recurrent parents, DP50 and DP50B. There were no seasonlong differences observed among the varieties in most plant development and insect parameters. However, DP50 had significantly lower emergence than the other lines tested (possibly related to seed quality). The lower plant population may have been responsible for greater whitefly abundance observed on two dates mid-season. During early-season ratings of secondary “pests” (15 DAP) (scaled on damage and/or presence), the two test lines received lower ratings for thrips and flea beetle when compared with DP50, DP50B and DP50Bu (untreated for Lepidoptera). However, these difference are likely as a result of the difference in seed treatments that the two test lines received (Gaucho®) and the others did not. This seed treatment does have known activity against thrips and beetle pests. In mid-season, the two test lines received lower ratings for beet armyworm when compared to DP50, DP50B and DP50Bu (although, not significantly different from DP50B or DP50Bu). Efficacy against pink bollworm (PBW) was assessed one time at the end of the season (we were limited to this time, so as to not affect yield), and DP50 was the only variety in which PBW exit holes were observed and PBW larvae collected. However, the low Lepidoptera pressure experienced during the season limited assessments of the two novel lines’ efficacy toward PBW. There was no significant difference in yield (bale/A) among the varieties. Although, one of the test lines had a lower lint turnout than each other variety. The two novel Bollgard lines performed well under our growing conditions, but continued evaluations will be necessary under more conditions and more insect pressures before “varietal” performance and gene efficacy can be assessed adequately.
    • 1998 Seed Treatment Evaluations

      Norton, Eric C.; Silvertooth, Jeffrey C.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      Cottonseed was treated with several fungicide treatments in an effort to protect the seed and seedling from disease. Seed germination and vigor was evaluated in three Arizona locations; Maricopa, Marana, and Safford. Stand counts were taken after emergence at all three locations and percent emergence (PEM) was calculated. Significant differences in percent emergence due to seed treatments were observed in the both sample dates at Marana. Maricopa and Safford showed no statistically significant differences due treatment.
    • Whitefly Management with Insect Growth Regulators and the influence of Lygus Controls

      Ellsworth, Peter C.; Naranjo, Steve E.; Silvertooth, Jeff; The University of Arizona, Department of Entomology & Maricopa Agricultural Center; USDA-ARS, Western Cotton Research Laboratory, Phoenix, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      The three keys to whitefly management are sampling, effective chemical use, and avoidance. This study examines factors relevant to the latter two keys in the context of Arizona’s cotton pest spectrum. Insect growth regulators (IGRs) are central to Arizona’s success in whitefly management. The basic usage guidelines developed for the IGRs—initial treatment timing, prescribed intervals between successive uses, and one use each seasonal limits—are all valuable in the development of a sustainable use pattern. Re-treatment timing guidelines for the second IGR has been the subject of investigation for the past two years. However, whitefly pressure in 1998 was strikingly different and lower than in any other post-introduction year. Re-treatment was unnecessary and thus could not be evaluated this year. Lygus, on the other hand, were at damaging levels early in plant development and for a protracted period. Future successes in whitefly management should consider the whole pest spectrum and depend on integrating chemical controls for all sprayed pests. While our primary focus is to optimize management of whiteflies in the context of other pests, this study examined the impact of Lygus controls on whitefly population dynamics and cotton production. Three sprays were required to control Lygus populations in this study. These sprays were atypically non-disruptive to whitefly population dynamics, and instead, helped to suppress low-level populations of whiteflies even further. This lack of disruption may have been due in part to the reduced abundance and role of natural enemies in this study. Lygus sprays did protect yields with a 3-fold advantage over untreated plots. Furthermore, there were a series of negative consequences of poor Lygus control. Plants tended to be more vegetative and more difficult to defoliate. Lower lint turnouts were documented for the Lygus-untreated areas. Sources of this additional loss were identified and included increased gin trash and larger seed size in Lygus-untreated areas. The lint also had significantly more sticking points as measured by manual thermodetector. While all cotton was determined to be non-sticky, this increased contamination may have been also related to the higher trash levels. Because of the differences in outcome in 1997 and 1998 in terms of Lygus spray effects on whiteflies, it is even more imperative that we further test whitefly management systems under near commercial conditions. A better understanding of the relationship between the control programs for these two major pests will help guide decisions on remedial inputs. This study also serves as an annual, replicated, and systematic accounting of whitefly population dynamics and control requirements useful for making historical comparisons across years. Inferences may be drawn about what are and are not the underlying causes of the unusual population dynamics observed in 1998.
    • Late Season Pink Bollworm Pressure in the Top Crop of Bt and Non-Bt Cotton

      Knowles, Tim C.; Dennehy, Tim J.; Rovey, Albert; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      Green bolls (100/field) were sampled from the uppermost internodes within adjacent fields of Bt (Deltapine 33B) and non-Bt refuge (Hyperformer HS 44 or Deltapine 20) experiencing severe pink bollworm pressure late in the growing season. Evidence of 3rd instar or larger pink bollworm larvae survival was higher in susceptible bolls sampled from transgenic Bt cotton late in the 1998 growing season, compared to that observed late in the 1997 growing season.
    • Evaluation of the Effects Added Nitrogen Interaction on Nitrogen Recovery Efficiency Calculations

      Norton, Eric R.; Silvertooth, Jeffrey C.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      Two studies were conducted in 1996 and 1997 at the University of Arizona Maricopa Agricultural Center (MAC) to evaluate the added nitrogen interaction (ANI) or ‘priming effect’ on the determination of nitrogen recovery efficiencies (NRE). The method employed was to compare NRE’s as calculated by two different methods; the difference technique and the isotopic technique. The difference in NREs observed between the two methods indicates the extent of an ANI. Results demonstrated no statistical differences between NRE’s calculated by the two methods. Therefore, no ANI was observed in the field. These results indicate that the less expensive method of calculating NREs (difference technique) is sufficient under irrigated cotton production systems in the desert Southwest.
    • Evaluation of a Foliar Applied Seed Bed Calcium Soil Conditioner in in Irrigated Cotton Production System

      Griffin, J. R.; Silvertooth, Jeffrey C.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      A multi-site experiment was conducted at Paloma Ranch, west of Gila Bend in Maricopa County and at Wellton in Yuma County Arizona. NuCotn 33B was dry planted and watered-up on 28 April 1998. Various rates of application of nitrogen (N) and calcium (Ca) from CN-9 [9-0-0-11Ca (5Ca(NO₃)₂•NH₄NO₃•10H₂O)] was used to evaluate the check. The CN-9 was applied as a foliar application directly to the seed bed on 27 April 1998. Treatment 1 was the check plot that received no CN-9. Treatment 2 received a 12 gal./acre application of CN-9 while treatment 3 received a 15 gal./acre application of CN-9. Each gal of CN-9 weighs approx. 12.2 lbs. and contains 1.1 lbs. of N and 1.4 lbs. of Ca. Treatment 2 received a total of 13 N/acre while treatment 3 received a total of 17 N/acre via CN-9. Treatment 1 received only farm standard applications of UAN-32. Treatments 2 and 3 each received farm standard applications of UAN-32 after the application of CN-9 for continued crop N needs. A total of 17 lbs./acre of Ca was applied to treatment 2 and 21 lbs./acre of Ca was applied to treatment 3. No significant differences were found among the various treatments in terms of plant growth, soil water content, ECₑ values, and sodium absorption ratios. Lint yields were not significantly different (P<0.05).
    • Upland Cotton Lint Yield Response to Several Soil Moisture Depletion Levels

      Husman, Stephen H.; Johnson, K.; Wegener, R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      Upland cotton lint yield response to several soil moisture depletion levels was measured in 1997 and 1998. In 1997, four Upland cotton varieties including DP 5415, DP 33B, DP 5816, and STV 474 were tested. However because of a nonsignificant variety difference in the 1997 test, the 1998 test was planted to a single variety (DP 33B). In 1997 and 1998, depletion of plant available soil water (PAW) irrigation treatments consisted of 35%, 50%, 65%, and 80%. In 1997, all PAW depletion treatments were significantly different with the 35% PAW treatment resulting in the highest average lint yield of 1880 lbs. lint/acre. The 50%, 65%, and 80% PAW treatments resulted in 1410, 1123, and 248 lbs. lint/acre respectively. There was no significant (P<0.05) difference between varieties within all PAW treatments in 1997. In 1998, all PAW depletion treatments again were significantly different with the 35% PAW treatment resulting in the highest average lint yield of 1658 lbs. lint/acre. The 50%, 65%, and 80% PAW treatments resulted in 1534, 1396, and 641 lbs. lint/acre respectively.
    • Date of Planting by Long Staple and Short Staple Variety Trial, Safford Agricultural Center, 1998

      Clark, Lee J.; Carpenter, E. W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      Four varieties each of Long Staple and Short Staple cotton were tested over four dates of planting in this study. The first date of planting for the Long Staple cotton was delayed to the 3rd of April because of poor weather earlier. The latest planting was May 13th. Cultivars of differing maturities were tested for both long and short staple cotton to determine their optimal planting time. Many agronomic and hvi values were evaluated to determine the effect of different planting dates.
    • Agronomic Comparison of Transgenic Varieties with their Parent Lines, Safford Agricultural Center, 1998

      Clark, Lee J.; Carpenter, E. W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 1999)
      As more transgenic varieties become available, grower=s interests intensify and more information is needed to satisfy the inquiries. Agronomic comparisons of six lines (transgenic varieties and their recurrent parents) from three companies are represented in this high desert study. Results show some subtle differences between the transgenic lines and their recurrent parents. Under the high Pink Bollworm pressure observed in the trial, yield increases were uniformly seen when the Bt gene was present, even though all plots were sprayed to control insect pests. Yields tended to be lower when herbicide resistence was introduced into the plants (even though not statistically significant), except when placed in a stacked array. Several agronomic values and HVI lint quality values are reported in this report.