• Performance of Bollgard II® Upland Cotton Strains in Arizona

      Moser, H. S.; Silvertooth, Jeff; University of Arizona (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      Experimental strains containing the Bollgard II® gene construct have been developed in upland cotton through transformation of DP50B. We evaluated the field performance of two of these new strains at four locations in Arizona. Lint yields of these two lines compare favorably with the parent material used to develop the lines (DP50B), but are significantly lower than other conventional and transgenic varieties that are adapted to Arizona. Fiber quality was not compromised in the Bollgard II strains. In fact, one line, 15813, produced fiber that was of superior quality to DP50B. One of the lines (15985) was similar to DP50B for all traits measured in this test. These results show that the Bollgard II gene construct does not, in itself, compromise agronomic performance. Thus, it should be possible to successfully place Bollgard II into other varieties that are adapted to Arizona in order to produce an agronomically superior variety with the added benefit of the Bollgard II technology.
    • Agronomic Evaluation of Transgenic Cotton Varieties

      Moser, H. S.; McCloskey, W. B.; Silvertooth, J. C.; Silvertooth, Jeff; Department of Plant Sciences, University of Arizona (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      Four field tests were conducted at three Arizona locations in 1999 to evaluate the performance of transgenic cotton varieties in Arizona. We included a total of 34 varieties in one or more of these tests. Across locations and varieties, Bollgard (BG) and stacked BG and Roundup Ready (BGRR) varieties produced about 7 to 8% greater lint yields than the conventional varieties from which they were derived. Across all varieties and all tests, the average lint yield of the Roundup Ultra sprayed RR or BGRR treatments was 1569 lb./A, while the average yield of the unsprayed RR or BGRR treatments was 1580 lb./A. Roundup Ready (RR) varieties produced lint yields similar to the conventional varieties with a couple of exceptions. Roundup Ready varieties tended to be taller and more vigorous than the conventional parent. Transgenic varieties were often different from the conventional parent in one or more traits, such as fiber quality, lint percent, boll weight, or maturity, but the variation was not associated with a particular transgene.
    • Comparison of Obsolete and Modern Cotton Cultivars for Irrigated Production in Arizona

      Holifield, C. D.; Silvertooth, J. C.; Moser, H.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      A study was conducted at the University of Arizona Maricopa Agricultural Center (MAC) to compare growth and development characteristics and determine differences in fruiting pattern and retention among two obsolete (Deltapine 16 and Acala 442) and three modern (Deltapine Acala 90, Deltapine 5415, and NuCotn 33b) Upland (G. hirsutum L.) cotton cultivars grown in an irrigated production system in Arizona. Results indicated that the majority of yield was produced at fruiting branches 10 through 18 at position one. Lint yield results indicated no significant differences among all cultivars tested, except for Acala 442, which was significantly lower than all others. Obsolete cultivars produced significantly higher amounts of lint on vegetative branches than modern varieties. Deltapine 16, followed by NuCotn 33b, had the highest harvest index and was the most efficient cultivar grown with respect to dry matter partitioning.
    • 1999 Low Desert Upland Cotton Advanced Strains Testing Program

      Husman, S.; Moser, H.; Wegener, R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      Upland cotton advanced strains and commercial check comparison varieties were evaluated in replicated field studies at four locations in 1999. The test sites include Yuma, AZ., Buckeye, AZ., Maricopa, AZ., and Safford, AZ.. Ten seed companies submitted a maximum of five advanced strains entries per location. Three commercial check varieties were used at each site for comparison purposes and included DP 5415, SG 125, and STV 474.
    • Short Staple Variety Trial in Cochise County, 1999

      Clark, L. J.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      The Acala and Upland Variety trials typically grown in Cochise County were combined into one study in 1999 and were planted on the Glenn Schmidt farm, in Kansas Settlement. Twelve varieties were tested including three New Mexico Acalas and one Interspecific Hybrid from Israel. The highest yielding variety in the trial was FM 989 with a yield near 1200 pounds of lint. It was also the highest yielding variety in the Cochise County trial in 1998. PM 1560 BG came in a close second with the Israeli varity (Hazera 151-208) and the two New Mexico varieties (1517-95 and 1517-99) yielding over 1100 pounds of lint.
    • Short Staple Variety Trials, Graham County, 1999

      Clark. L. J.; Carpenter, E. W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      Two replicated on-farm short staple variety trials were planted in 1999. Twenty-two varieties were evaluated on the Claridge farm in Solomon and fifteen varieties on the Colvin farm near Ft. Thomas. Several new varieties were planted in these studies, including 2 transgenic varieties: DP 5690RR, BXN 16; 4 Israeli inter-specific hybrids and six other varieties seen for the first time. DP 35B was the highest yielding variety in the Claridge trial with BXN 47 a close second. Both varieties yielded over 1300 pounds of lint per acre. PM 1440 was the highest yielding variety in the Colvin trial with SG 747 and DP 5690RR following closely behind. These varieties yielded between 700 and 800 pounds of lint per acre. Other agronomic data from the varieties and HVI values from the lint are also included in this report.
    • Upland Cotton Regional Variety Trial

      Moser, H.; Hart, G.; Clark, L.; Silvertooth, Jeff; University of Arizona Cooperative Extension (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      Each year the University of Arizona conducts upland cotton variety tests to evaluate the performance of a diverse set of experimental lines and commercial varieties in Arizona. One such program is the Regional Variety Test (RVT). In 1999, we evaluated a total of 59 varieties at one or more locations in Arizona. These varieties were submitted to us for testing by 16 private seed companies and two public breeding programs. This report presents the results of the trials conducted at Maricopa, Marana, and Safford.
    • Arizona Upland Cotton Variety Testing Program, 1999

      Moser, H.; Clark, L.; Husman, S.; Clay, P.; Silvertooth, J.; Silvertooth, Jeff; University of Arizona Cooperative Extension (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      Each year the University of Arizona conducts on-farm variety trials across the state to evaluate the performance of upland cotton varieties. These tests provide many segments of the industry with unbiased, independent data on the performance of varieties from several seed companies when tested side-by-side under typical production practices. Ten trials were planted in the cotton producing areas of the state, ranging from Wellton in Yuma county to Kansas Settlement in Cochise county. Seed companies entered a maximum of two varieties per location resulting in eight to thirteen commercially available varieties per test. The results show that many varieties performed well at several locations, indicating good adaptation to Arizona conditions.
    • Mepiquat Chloride Effects on Irrigated Cotton in Arizona

      Norton, E. J.; Silvertooh, J. C.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      A series of experiments have been conducted from 1988 to 1999 at various locations across the cotton producing regions of Arizona to evaluate mepiquat chloride (MC) applications in terms of plant growth and yield. These experiments were designed to evaluate MC under three application regimes. These regimes included low rate multiple applications, late season applications, and a feedback vs. scheduled management of MC and nitrogen (N) applications. The objective of this summary (including a total of 31 site-years) is to determine which of these three application regimes offer the greatest opportunity for a positive lint yield response to MC. Stability analysis was conducted by regressing the treatment mean lint yield against the environmental mean for each application regime. Results from the stability analyses revealed that the most viable method of application is a feedback approach for both MC and fertilizer N. The most reliable technique associated with plant assessment in a feedback approach was the height to node ratio (HNR) to indicate vegetative tendencies for determining the appropriate rate and timing of MC applications.
    • Evaluation of a Feedback Approach to Nitrogen and Pix Applications, 1998 and 1999

      Norton, E. J.; Silvertooth, J. C.; Norton, E. R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      A single field experiment was conducted at Marana, AZ in 1988 and 1999 to evaluate a scheduled (based upon stage of growth) versus a feedback approach (based upon growth parameters and crop conditions) to nitrogen (N) and mepiquat chloride (PixTM) applications on Upland cotton (Gossypium hirsutum L.). The parameters used in the feedback applications for both N and Pix included fruit retention (FR) levels and height to node ratios (HNRs) with respect to established baselines for irrigated cotton grown in the desert Southwest. Treatments consisted of all combinations of feedback and scheduled applications of both N and Pix. In 1998, the highest lint yields occurred in the treatment consisting of Pix feedback and N feedback (treatment two) management. However, there were no significant differences (P≤0.05) among any of the treatments with respect to yield. In 1999, significant light yield increases (P<0.05) were found in the treatments consisting of Pix feedback and N feedback (treatment two), Pix scheduled and N scheduled (treatment three), and Pix scheduled and N scheduled (treatment five) management approaches.
    • How to Obtain Cotton Advisories from the Internet

      Brown, P.; Russell, B.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      Weekly production advisories and weather updates are now available from the Internet. Nineteen location-specific advisories are developed each Monday morning and then transferred to the Main AZMET Internet Web Page located at URL address http://ag.arizona.edu/azmet. To retrieve advisories or updates from the Internet users must 1) log on to the Internet using the procedures required by your Internet service provider; 2) enter the URL for the Main AZMET Web Page; 3) move to the Cotton Advisory sub-page; and 4) select the advisory or update of interest. Advisories for the most recent week, this year to date, and all of 1999 are available at this Internet address.
    • The 2000 Arizona Cotton Advisory Program

      Brown, P.; Russell, B.; Silvertooth, J.; Ellsworth, P.; Olsen, M.; Husman, S.; Clark, L.; Schneider, M.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      Arizona Cooperative Extension generates and distributes weather-based Planting Date and Cotton Development Advisories for 19 cotton production areas (Aguila, Buckeye, Cochise Co., Coolidge, Eloy, Greenlee Co., Harquahala, Laveen, Litchfield Pk., Marana, Maricopa, Mohave Valley, Paloma, Parker, Pinal Co., Queen Creek, Roll, Safford and Yuma Valley). Planting Date Advisories are distributed from legal first planting date until the end of April and provide updates on heat-unit-based planting windows, recent and forecasted weather conditions, heat unit accumulations, variety selection, soil temperatures, recommended plant population, and early insect management and control. Cotton Development Advisories are distributed from early May through early September and provide updates on crop development, insects, weather and agronomy. The Cotton Advisory Program will continue in 2000, and growers may obtain from the AZMET Internet Web Page (http://ag.arizona.edu/azmet) or by mail/fax from local extension offices.
    • 1999 Integrated Cotton Management Demonstration

      Martin, Edward C.; Dittmar, Stefan H.; Ellsworth, Peter C.; Silvertooth, Jeffrey C.; McCloskey, William B.; Olsen, Mary W.; Roth, Robert L.; Tronstad, Russell E.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      An Integrated Cotton Management (ICM) Demonstration project was conducted on the Demonstration Farm at the Maricopa Agricultural Center in 1999 for the second year. In this project, all current guidelines and recommendations disseminated by the University of Arizona were integrated in a systems approach for cotton production. The Extension Specialists in agronomy, entomology, irrigation management, weed sciences, and plant pathology following the University recommendations made the management decisions. On a 52.7 acre field, 78% Bt and 22% non-Bt cotton was planted into moisture on April 9, 1999. Because of problems with cool temperatures and deep seeding, a stand of only 25,000 plants/acre was established. Weed control was achieved with one preplant application and two cultivations. The field was sprayed three times for lygus and two times for whitefly control. Approximately 38.6 acre-inches of irrigation water was applied. An average of 3005 lb/acre of seed cotton were harvested. After harvesting, a field budget was established. The variable costs per acre were $594.96 and the total cost was $957.96/acre. Average micronaire was 4.45, strength was 28.41 gm/Tex, length was 1.10 (1/100 in.) and grade color was 21. The price received for the cotton was 74.82¢/lb, including LPD and hail damage payments, just over 3¢/lb below the break-even price. An additional $139/acre in PFC payments was received but not calculated into the budget. This project demonstrates the utility and compatibility of current recommendations and the potential for integration of all disciplinary guidelines in one system.
    • Development of a Yield Projection Technique for Arizona Cotton

      Norton, E. R.; Silvertooth, J. C.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      A series of boll measurements were taken at numerous locations in cotton producing areas across Arizona in 1999 in an attempt to continue to develop a yield prediction model with a project that began in 1993. Results from 1995 showed the strongest relationship between final open boll counts and yield compared to a number of other measurements. Based on these results, data collection on boll counts began in 1996 and has continued in 1997, 1998, and 1999. Boll counts were taken as the number of harvestable bolls per meter. All boll count measurements were made within one week of harvest. Number of bolls per unit area were then correlated to lint yield and an estimate for the number of bolls per area needed to produce a bale of lint was calculated. Estimates using all four years of data combined indicate that approximately 38 bolls per meter are needed to produce one bale of lint per acre.
    • Cotton Defoliation Evaluations, 1999

      Silvertooth, J. C.; Norton, E. R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      Two field experiments were conducted near Marana and Coolidge, AZ in 1999 to evaluate the effectiveness of a number of defoliation treatments on Upland (var. DP 33b and AP 6101) cotton. All treatments consisted of materials commercially available in Arizona. Results reinforce general recommendations regarding the use of low rates (relative to the label ranges) under warm weather conditions and increasing rates as temperatures cool. Defoliation treatments of Ginstar alone did a satisfactory job of defoliation and regrowth/topgrowth contol and were very similar to treatments including Prep or Integrate. Adding Prep or Integrate to Ginstar in this experiment did not improve defoliation or topgrowth control.
    • Date of Planting by Long Staple and Short Staple Variety Trial, Stafford Agricultural Center, 1999

      Clark, L. J.; Carpenter, E. W.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      Four varieties each of Long Staple and Short Staple cotton were tested over five and four dates of planting, respectively, in this study. The first date of planting for the Long Staple cotton was the 18th of March and for Short Staple cotton the 1st of April. The latest planting was May 13th. Cultivars of differing maturities were tested for both long and short staple cotton to determine their optimal planting time. Many agronomic parameters were evaluated to determine the effect of different planting dates
    • Planting Date Effects on Soil Temperature, Crop Growth, and Yield of Upland Cotton, 1999

      Silvertooth, J. C.; Norton, E. R.; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      A field study was conducted in 1999 at the University of Arizona Marana Agricultural Center (1,974 ft. elevation) to evaluate the effects of three planting dates on yield and crop development for eight Upland varieties. Soil temperature effects associated with date of planting and method of planting (dry or wet planting) were also evaluated in relation to soil temperature at the depth of seed placement. Planting dates ranged from 28 April to 20 May and 821-1157 heat units accumulated since Jan 1 (HU/Jan 1, 86/55o F thresholds). Lint yields generally declined with later dates of planting for all varieties. Soil temperatures associated with the dry planting method, which requires a water-up irrigation, experienced much wider diurnal variations, had slightly lower mean temperatures, and were more strongly coupled to ambient air conditions. Thus, dry planting methods impose more potential risk in terms of seedling stress. Overall, crop growth and development patterns or yield results were not significantly different between the planting methods. Either method can provide satisfactory results if managed appropriately.
    • The New U. S. - China Trade Agreement and Arizona Cotton

      Ayer, Harry; Frizvold, George; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      Gaining greater access to export markets, particularly Asian markets, is important to Arizona cotton producers. Over 80 percent of Arizona’s cotton shipments are exports, roughly double the U.S. average. Asian countries typically account for half of world cotton imports. Relative to the rest of the United States, Arizona (along with California) has a location advantage supplying these markets. In November 1999 the United States and China signed a trade agreement to reduce China’s trade barriers and win U.S. support for China’s entry into the World Trade Organization (WTO). According to recent USDA projections, the agreement would increase China’s net cotton imports by $359 million when fully implemented in 2005 and by $328 million per year between 2000-09. Political uncertainty surrounds the timing of China’s accession to the WTO, however, and China’s return to cotton net-importer status could be delayed by Chinese policies to draw down their large accumulation of cotton stocks.
    • Economic Impacts of Bt Cotton Adoption: A National and Regional Assessment

      Frizvold, George; Tronstad, Russell; Mortensen, Jorgen; Silvertooth, Jeff (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      This study uses a quadratic programming model to estimate impacts of Bt cotton adoption on consumer benefits, cotton program outlays, and producer returns, by state and by grower adoption status. Three scenarios were considered simulating low, moderate, and high impacts of Bt cotton adoption. For the moderate impact scenario, U.S. benefits from Bt cotton adoption grew from $44 million in 1996 to $66 million in 1998. Annual U.S. consumer benefits ranged from $46– $55 million. Benefits to Bt adopters grew from $57 million in 1996 to $97 million in 1998. Losses to non-adopters fell from -$59 million in 1996 to -$8 million in 1998 as rising commodity program payments countered the impact of lower prices. In 1998, gains to Arizona Bt cotton adopters (net of adoption costs) were about $9 million, averaging over $15,000 per adopting farm.
    • Weed Control in Arizona Ultra Narrow Row Cotton: 1999 Preliminary Results

      McCloskey, William B.; Clay, Patrick A.; Husman, Stephen H.; Silvertooth, Jeff; Department of Plant Sciences, University of Arizona, Tucson, AZ; Maricopa County Cooperative Extension, University of Arizona, Phoenix, AZ; Pinal and Pima County Cooperative Extension, University of Arizona, Tucson, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 2000)
      In two 1999 Arizona studies, a preplant incorporated (PPI) application of Prowl (2.4 pt/A) or Treflan (0.75 lb a.i./A) followed by a topical Roundup Ultra (1 qt/A) application at the 3 to 4 true leaf cotton growth stage provided good weed control. At the University of Arizona Maricopa Agricultural Center field that had low density weed populations, a postemergence topical Staple (1.8 oz/A) application also provided good weed control was more expensive. At the Buckeye, Arizona study site, a PPI application of Prowl at a reduced rate (1.2 pt/A) was as effective as the full rate (2.4 pt/A) but a preemergence application of Prowl (2.4 pt/A) was not as effective as either of the PPI Prowl rates or PPI Treflan (0.75 lb a.i./A). A postemergence topical Staple application (1.8 oz/A) following the Roundup Ultra application did not significantly improve weed control. After one field season of experimentation and observation in Arizona UNR cotton, experience suggests that in fields with low to moderate weed populations, a PPI Prowl or Treflan application followed by a postemergence topical Roundup Ultra application will provide acceptable weed control in most fields. However, the presence of nutsedge or other difficult to control weeds may require two postemergence topical Roundup Ultra application prior to the four leaf growth stage of cotton. More research is needed to further explore weed control options in Arizona UNR cotton production systems.