• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Effect of CO₂ on the chemical equilibrium of soil solution and ground water.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1967_240_sip1_w.pdf
    Size:
    6.820Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1967_240_sip1_w.pdf
    Download
    Author
    Dyer, Kenneth L.
    Issue Date
    1967
    Keywords
    Hydrology.
    Carbon dioxide.
    Soil chemistry.
    Water -- Composition.
    Committee Chair
    Dutt, Gordon R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The equilibrium equations relating dissolved CO2 , HC03- CO3-, H+, solid phase CaC03 , exchangeable H+ and ionic strength were programmed for simultaneous solution on a 7072 IBM digital computer. This routine was combined with an eXisting program which had been successfully used to relate the equilibrium of soluble and exchangeable Ca+ + ,Mg+ + ,Na+; dissolved Cl - , S04- ' and N03-; and solid phase CaS04 •2H20. The final systems analysis model thus developed accounted for most of the dissolved substances normally present in significant quantities in ground waters and soil solutions. This model made possible calculation of the equilibrium concentrations which would result if the concentration of one or more of these constituents were to be arbitrarily changed. This systems analysis model was used to predict the equilibrium concentrations of ionic species in soil solutions obtained from soils at moisture and carbon dioxide levels different from those prevailing in the original analysis. The soils used in this study were vastly different in chemical characteristics, texture, and genesis. Included were soils which were both acid and basic in reaction, calcareous and noncalcareous, gypsiferous and nongypsiferous, and both high and low in organic matter. In general, the chemical predictions obtained were of about the same level of accuracy as the experimental methods used to determine these chemical constituents. Soil cores from strata underlying an irrigated area were collected, and the 1: 1 soil-water extracts of these cores were analyzed for chemical constituents. The systems analysis model developed in this study was then used to estimate the concentrations of the chemical constituents which would have been in solution in the cores at the time they were sampled. The soil solutions calculated to be in most strata were similar to the underlying ground water, thus indicating a probable common origin for the water above and below the water table. It is believed that this systems analysis approach can, with minor modification, be used to predict changes in ground water quality as water percolates through strata of known chemical characteristics.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Hydrology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.