• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Energy balance considerations in the design of floating covers for evaporation suppression.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1969_199_sip1_w.pdf
    Size:
    1.112Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1969_199_sip1_w.pdf
    Download
    Author
    Cooley, Keith Roy,1935-
    Issue Date
    1969
    Keywords
    Hydrology.
    Evaporation control.
    Committee Chair
    Sellers, William D.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This study consists of a theoretical analysis of the energy balance equation for a partially covered body of water, and experimental analyses of the energy balances of partially covered insulated evaporation tanks. The theoretical analysis indicates that surface reflectance for solar radiation and infrared emittance are the most important cover properties. White colored materials were found to satisfy the requirement that both these parameters be as large as possible. Experiments were conducted using covers of foamed wax, lightweight concrete, white butyl rubber, and styrofoam. A variety of shapes and sizes were tested. Cover radiative properties were again noted to be most important, and thin covers proved to be slightly more efficient than thick insulated covers of the same size. Evaporation reduction was found to be proportional to the percent of surface area covered, the constant of proportionality depending upon the color and type of material used. For the white, impermeable materials tested, the constant of proportionality was near unity. It was also noted that reduction in evaporation and reduction in net radiation, as compared to an open tank, were highly correlated. Evaluation of two Dalton-type expressions, the Bowen ratio method and the combination method, for predicting evaporation from an open water surface, showed the combination method to be better under conditions of this experiment. Based on this finding, a modified combination method was derived. This modified equation proved valid for predicting evaporation from a partially covered body of water. The use of insulated evaporation tanks also provided an easy and accurate method of predicting net radiation over other surfaces, and long-wave atmospheric radiation.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Hydrology and Water Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.