• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Variation in transpiration and its relationship with growth for Pinus ponderosa Lawson in southern Arizona.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1969_308_sip1_w.pdf
    Size:
    929.9Kb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1969_308_sip1_w.pdf
    Download
    Author
    Budelsky, Carl Albert,1936-
    Issue Date
    1969
    Keywords
    Hydrology.
    Plants -- Transpiration.
    Ponderosa pine.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The climate, water loss, arid certain aspects of growth in semiarid-site ponderosa pine were measured from 1 February 1966 to 10 March 1967 to determine the environmental relationships governing transpiration, internal water balance, and tracheid production. Water loss from branches and from entire trees was measured by means of polyethylene enclosures. Changes In internal water status of the tree were ascertained from seasonal trends in loss of water from branches and diurnal as well as seasonal changes in the radius of the bole. The elongation of branches and needles, and the production of tracheids and their size and wall thickness were related to the coincident internal water status of the tree. The branch enclosure technique was found to be a convenient method by which the water loss process could be studied. The seasonal changes in transpiration undoubtedly were influenced by the elevated temperatures that developed within the enclosure during the day. However, the elevated temperatures did not appear to adversely influence branch and needle elongation within the chamber. Warm air temperatures and low soil moisture during June and early July increased internal water stress, reduced daytime water loss, and reduced elongation of branches and needles. Fewer tracheids were produced in the upper bole. They were small and had thick walls, Moisture from rains in July replenished soil moisture and larger, thin-walled tracheids were differentiated so that the intra-anntjlar band of small, thick-walled cells became apparent. Gradual shrinkage of the upper bole in June implied that the above changes in growth were due to changes in internal water deficits. There were no marked changes in tracheid sizes and wall thickness in the lower bole during 1966. Intra-annular bands of narrow, thick-walled tracheids occurred times during the last 10 years in the upper bole in the last 50 years in the lower bole. Graphical analysis showed that midday reductions in rates of xi transpiration during periods of low soil moisture and high air temperatures occurred in spite of steepening water vapor gradients and before stomates were closed. This evidence supports the hypothesis that reductions in water loss during midday may result directly from internal water deficits. Soil moisture, air temperature, and incident radiation appeared to influence transpiration by altering the availability of water, the vapor pressure gradient, and the energy available for evaporation.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Watershed Management
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.