• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Thunderstorm runoff in southeastern Arizona.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1971_178_sip1_w.pdf
    Size:
    5.131Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1971_178_sip1_w.pdf
    Download
    Author
    Osborn, H. B.(Herbert B.),1929-
    Issue Date
    1971
    Keywords
    Hydrology.
    Thunderstorms.
    Runoff -- Arizona -- Walnut Gulch Watershed.
    Watersheds -- Research -- Arizona.
    Committee Chair
    Laursen, Emmett M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Almost all runoff-producing rainfall on small watersheds (100 square miles and less) in southeastern Arizona results from air-mass thunderstorms. On large watersheds (1,000 square miles and greater) frontal systems which may include thunderstorm activity or snowmelt produce the major flood peaks as well as much of the annual runoff. Air-mass thunderstorms are of short duration and limited areal extent, and generally occur in the late afternoons and early evenings in July, August, and September. Runoff-producing rainfall may occur from frontal-convective systems at any time although they are most common in southeastern Arizona in September. Rainfall and runoff records have been collected from the 58- square-mile Walnut Gulch rangeland watershed near Tombstone in southeastern Arizona by the Agricultural Research Service since 1954. These data represent the best information available on thunderstorm rainfall-runoff relationships in the Southwest. At present there are 95 recording rain gages and 22 permanent runoff-measuring stations on the Walnut Gulch watershed. Runoff-producing thunderstorm rainfall is extremely variable both in time and space, and is therefore difficult to measure accurately and define precisely. Isohyetal mapping for rainfall from individual thunderstorms both for total rainfall and shorter durations within the storm provides good qualitative information, and also provides some quantitative limits on storm movement, intensities and volumes, and areal extent. Runoff records from Walnut Gulch and other Arizona watersheds indicate that peak discharge and runoff volume from individual thunderstorms decrease with increasing watershed size because of the limited areal extent of runoff-producing thunderstorms and because cf the increasing channel abstractions with increasing watershed size. Channel abstractions greatly alter runoff hydrographs as flood surges move through the ephemeral channel system. Five major runoff-producing thunderstorms on Walnut Gulch between 1957 and 1967 were used to develop a model for the maximum expected rainfall in southeastern Arizona. The model was based on maximum 30-minute point rainfalls within the average 60-minute runoff-producing thunderstorm. Over 2.5 inches of rainfall has been recorded in 30 minutes on Walnut Gulch during 3 thunderstorms in 15 years of record (1955-1969). A thorough search of U.S. Weather Bureau and other records indicated that no storms of this combined intensity and magnitude have been recorded in Arizona. Therefore, for design purposes, the expected mean 30-minute rainfall for southeastern Arizona was estimated as 3 inches. Regression analysis was used to estimate peak discharges for major runoff events on Walnut Gulch and to develop a rainfall-runoff model for Walnut Gulch. Peak discharges were correlated with the maximum 30-minute rainfall, which was considered the core of runoff-producing rainfall for major runoff events. Antecedent channel conditions and distance between watershed outlet and runoff-producing rainfall had little effect on the correlation. The coefficients of determination for the regression equation correlating thunderstorm rainfall and peak runoff were 0.92 and o.84 for watershed 5 (8 square miles) and watershed 1 (58 square miles), respectively. With the model for maximum expected rainfall and the rainfall-runoff model for estimating peak discharge from maximum 30-minute rainfall, maximum discharge for the 58-square-mile Walnut Gulch watershed was 23,000 c.f.s. Assuming a normal distribution of errors, within 95 percent confidence limits, the limits were 19,000 and 27,000 c.f.s., and assuming the Chebyshev inequality, the limits were 15,000 and 31,000 c.f.s. Recurrence intervals for 20-, 50-, and 100-year storms and the maximum peak discharges were developed for small watersheds (100 square miles and less) from Walnut Gulch data. The curves were compared to a family of curves for Arizona watersheds up to several hundred thousand square miles. The family of curves based on Walnut Gulch data were much steeper, strongly suggesting that there are 2 families of curves, one steeper family for the small watersheds (100 square miles and less) which is based on runoff peaks from air-mass thunderstorms, and another flatter family of curves for the large watersheds (1,000 square miles and greater) which is based on runoff peaks from frontal-convective systems and snowmelt. The 2 families of curves probably intersect between 100 and 1,000 square miles.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Civil Engineering and Engineering Mechanics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.