• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Statistics

    Display statistics

    Isotopic and chemical considerations in radiocarbon dating of groundwater within the arid Tucson Basin, Arizona.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1973_331_sip1_w.pdf
    Size:
    5.707Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1973_331_sip1_w.pdf
    Download
    Author
    Wallick, Ed.
    Issue Date
    1973
    Keywords
    Hydrology.
    Groundwater -- Arizona -- Tucson Basin.
    Radioisotopes in hydrology.
    Committee Chair
    Long, Austin
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A chemical-isotopic equilibrium model was developed for adjustment of radiocarbon ages of groundwater from the arid Tucson basin for dilution of the initial groundwater C-14 activity by the solution of soil calcite having a C-14 of 25 ± 19% modern. Input to the model consisted of the laboratory chemical analyses for Ca⁺⁺, Mg⁺⁺, Na⁺, H₄SiO₄, SO₄⁼, HCO₃⁻, CO₃⁼, NO₃⁻, and pH, and δ C-13 for the total dissolved carbon in the groundwater. Output consisted of the equilibrium chemical composition of the groundwater, the ratio of soil CO₂ derived to total dissolved carbon, Q, and δ C-13 of total dissolved carbon, H₂CO₃, HCO₃⁻, and CO₃⁼, and δ C-13 for the soil CO₂ and calcite that initially dissolved in the surface water as it equilibrated with soil minerals. Radiocarbon age of the groundwater is computed from the equation T = 8270 ln [(Q + (1-Q) A(CaCO₃)/Am] where T is the age in years before A.D. 1950, A(CaCO₃) is the soil calcite activity and Am is the measured activity for the dissolved carbonate in the groundwater, both with respect to modern wood. The validity of the model was tested by comparing the predicted values for δ C-13 (CO₂), δ C-13 (CaCO₃) with measured values for samples from the Tucson basin. δ C-13 (CO 2) calculated = (-12.9 ± 1.9) per mil PDB. δ C-13 (CO2) measured = (-15.1 ± 2.8) per mil PDB. δ C-13 (CaCO3) calculated = (-3.9 ± 1.7) per nil PDB. δ C-13 (CaCO3) measured = (-3.6 ± 1.7) per mil PDB. On the basis of these results, the model adequately describes the natural system and may prove useful in future radiocarbon dating work in desert regions.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Geosciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.