• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Evaluation of the water resources of the Central Luzon Basin, Philippines.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1976_437_sip1_w.pdf
    Size:
    13.51Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1976_437_sip1_w.pdf
    Download
    Author
    Galvez, Jose Alfonso,1943-
    Issue Date
    1976
    Keywords
    Hydrology.
    Hydrology -- Philippines.
    Committee Chair
    Ince, Simon
    Roefs, Theodore G.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The study aims to provide a framework for the quantitative evaluation of the water resources on a regional basis. The work involves hydrologic data augmentation and analysis of the water budget of the Central Luzon Basin, a humid, tropical region. Four hydrologic data augmentation methodologies -- percent deviation, HEC-4, YOR, and Matalas-Jacobs -- were analyzed and compared. Streamflow data of five gaging stations in the Central Luzon Basin were divided into early-half and late-half series. Augmentation estimates based on the late-half series were compared with the corresponding historical early-half series. The methods were assessed based on eight comparison items and two scoring systems. The comparison items considered were double mass analysis, mean, cumulative annual deviations, and standard deviations, for the annual flows; and maximum, minimum, mean, and standard deviations, for the monthly flows. The percent deviation method excelled in both scoring systems and was selected as the best method for the hydrological characteristics and type of available data in the region. Application of the percent deviation method in augmenting the record of selected streamflow gaging stations within the Central Luzon Basin pointed out some limitations of the method. These limitations may be remedied by proper selection of the station on which the augmentation estimates are based. Strong statistical relationship between the dependent and base stations, in addition to other hydrological factors, should be satisfied for the derivation of more reliable estimates in the application of the percent deviation to streamflow data augmentation. The water budget analysis revealed that about 54 percent of the annual precipitation in the basin is measured as streamflow. The balance of 46 percent is shared by evapotranspiration and change in basin storage. An average annual evapotranspiration of about 1,070 mm was found. This is about 0.5 of the average Class A pan evaporation data from two measurement points. Surface water resources remain the most important source of water for the basin requirements. No serious water quality problems exist and surface water in the basin is suitable for both domestic and agricultural purposes. Groundwater could be a promising alternative resource for both domestic and agricultural uses. High recharge during the rainy season, about 5,000 to 7,000 MCM, and relatively shallow aquifers are among the significant features of the groundwater basin.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Hydrology and Water Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.