• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Preferential short-range reservoir control

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1978_34_sip1_w.pdf
    Size:
    4.565Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1978_34_sip1_w.pdf
    Download
    Author
    Krzysztofowicz, R.(Roman),1947-
    Issue Date
    1978
    Keywords
    Hydrology.
    Reservoirs.
    Committee Chair
    Duckstein, Lucien
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    From the standpoint of real-time reservoir operation, the multipurpose control problem may be reduced to a dual purpose problem of (1) short-range control, which aims at reducing high flows and (2) longrange control, which aims at augmenting low flows and distributing stored water after the flood has receded. A decision framework for short-range reservoir control is formulated under three postulates: (1) The input to the control model is a stochastic forecast of the reservoir inflow process. (2) The control process is guided by a preference criterion which reflects the reservoir manager's value judgments concerning preferences over operating attributes, trade-offs between reservoir purposes, and attitude toward risk. (3) The long-range control is imbedded into the short-range control through the attribute space of the preference criterion, which allows for explicit consideration of the trade-offs between reservoir purposes, and through the state space and time domain of the control process, which allows for maintaining the continuity of the control. This investigation focuses on development of a preference criterion and on formulation of a control model. The preference crite- Huais developed within the framework of utility theory. The value judgments of the reservoir manager are quantified in terms of a two-attribute disutility function. It is argued that minimization of expected disutility is a plausible and well motivated criterion for reservoir control under uncertainty. A suitable disutility model is developed. The case of a group decision maker is analyzed in depth, and a methodology for obtaining a group disutility function is proposed. Some principles and techniques for assessing disutility functions are advocated; they are motivated by results of psychological research in human decision behavior, and are further supported by experimental evidence. Results of assessment of the reservoir control disutility function for several single and group decision makers are presented. The reservoir control process is conceptualized in the form of two sub-processes: (1) Forecast-Strategy Process, which is modeled as an open-loop feedback controller and (2) Control Process, which is modeled as a truncated Markovian adaptive controller. The optimal control strategy is selected on the basis of the preference criterion. A set of measures of effectiveness is proposed for evaluating the past performance of the controller. Computational aspects of the control model are analyzed. Certain monotonicity properties of the optimal control strategy are proven, and two suboptimal control strategies are derived: (1) partial open-loop strategy and (2) naive/partial open-loop strategy.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Hydrology and Water Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.