• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Temperature and sediment effects on the hydraulics of drip irrigation lines

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1984_498_sip1_w.pdf
    Size:
    10.14Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1984_498_sip1_w.pdf
    Download
    Author
    Ben Ncir, Hamadi.
    Issue Date
    1984
    Keywords
    Hydrology.
    Microirrigation.
    Irrigation -- Equipment and supplies.
    Committee Chair
    Warrick, Arthur W.
    Bucks, Dale A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Experiments were conducted with 180 m long T-tape and Agrifim emitter lateral lines in the laboratory and field to determine the effects of water temperature and sediment concentration on the hydraulics of drip irrigation laterals. The flow regime was laminar through the T-tape emitter and turbulent through the Agrifim emitter. Water temperature decreased along the lateral line in the laboratory where the inlet water temperature was higher than ambient air. In contrast, temperatures increased along a lateral line exposed to the sun in the field with an inlet temperature lower or slightly higher than that of air. The rate of increase or decrease was more pronounced towards the end of the line. The effect of temperature was highly significant on emitter flow rates obtained for a T-tape emitter as opposed to those recorded for the Agrifim emitter in the laboratory; however, the increase of emitter flow rates due to temperature was reduced by plugging in the field. Discharges of T-tape emitters were dominated by the hydraulic pressure for the first half of the line with the water temperature being more important for the second half of the line in both the laboratory and field. Measured discharges of Agrifim emitters were dominated by the hydraulic pressure for the entire lateral length especially in the laboratory. The Darcy-Weisbach friction factor, as opposed to the Blasius friction factor, is recommended for design because it accounts for the wall roughness of the pipe. The Hazen-Williams roughness coefficient was related to Reynolds number to improve the drip system design. Total friction losses, as a result of water viscosity changes and lateral discharge variations due to temperature, increased significantly for the T-tape emitter lateral in the laboratory and field for different inlet water temperatures and inlet-outlet temperature variations. In contrast, total friction losses decreased for the Agrifim emitter lateral primarily because of water viscosity changes with temperature. The sediment concentration along an Agrifim emitter lateral in the laboratory decreased sharply in the second half of the line when the flow velocity dropped below 0.29 ms⁻¹ . Also friction losses increased for an Agrifim emitter lateral in the laboratory as the inlet concentration increased from 200 to 650 mg/l.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Soils, Water and Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.