• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Statistics

    Display statistics

    The effects of molecular diffusion on groundwater solute transport through fractured tuff

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1985_458_sip1_w.pdf
    Size:
    4.730Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1985_458_sip1_w.pdf
    Download
    Author
    Walter, Gary R.
    Issue Date
    1985
    Keywords
    Hydrology.
    Groundwater flow.
    Groundwater tracers.
    Volcanic ash, tuff, etc.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Theoretical and experimental studies of the chemical and physical factors which affect molecular diffusion of dissolved substances from fractures into a tuffaceous rock matrix have been made on rocks from G Tunnel and Yucca Mountain at the Nevada Test Site (NT8). Although a number of physical/chemical processes may cause nonadvective transport of dissolved species from fractures into the tuff matrix, diffusion in these rocks is controlled by the composition of the groundwater through multicomponent effects and several rock properties. The effective molecular diffusion coefficient of a particular species in the tuff can be related to its free aqueous diffusion coefficient by Dₑ = θ(m)(α/τ²)D₀ where bm is matrix porosity, α is the constrictivity, and τ is the tortuosity. The porosities of the samples studied ranged from 0.1 to 0.4. The parameter (α/τ²) ranged from 0.1 to 0.3, and effective matrix dif— fusion coefficients were measured to be between 2 to 17. x 10⁻⁷ cm²/s for sodium halides and sodium pentafluorobenzoate. Total porosity was found to be the principle factor accounting for the variation in effective diffusion coefficients. The constrictivity— tortuosity factor was found to have a fair correlation with the median pore diameters measured by mercury intrusion. Measurements of bulk rock electrical impedance changes with frequency indicate that the constrictivity factor, a, has a maximum value of 0.8 to 1, but may be smaller. If the larger values are correct, then the diffusion paths in tuff are more tortuous than in granular media. The diffusion coefficient matrix computed for various tracers in J-13 well water from the NTS indicates coupling of the diffusion fluxes of all ionic species. Multicomponent diffusion is a second order effect, however, which does not significantly affect experimental results. The results of a bench—scale fracture flow experiment revealed that the transport of ionic tracers (SCN ⁻ and pentafluorobenzoate) was affected by diffusion into the tuff matrix. The transport of a particulate tracer did not appear to be affected by diffusion.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Hydrology and Water Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.