• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Land use optimization and sediment yield model for Siran Watershed (Pakistan)

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1985_478_sip1_w.pdf
    Size:
    7.574Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1985_478_sip1_w.pdf
    Download
    Author
    Shah, Bashir Hussain.
    Issue Date
    1985
    Keywords
    Hydrology.
    Sedimentation and deposition -- Pakistan -- Siran River Watershed.
    Reservoir sedimentation -- Pakistan.
    Committee Chair
    Thames, John L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The main objective of this study is an assessment of the potential of applying land use optimization methods for minimizing the sediment yield from catchments. The study area is the Siran watershed, a subwatershed of the Tarbela watershed in Pakistan which drains directly into the Tarbela reservoir. It has an area of 4Ub sq. miles and receives 47.82 inches annual average precipitation. The main land use practices on the Siran Watershed are agriculture, rangeland grazing and forestry. A stochastic model for simulating daily precipitation and another for simulating daily maximum temperatures are developed for the area. The synthetic daily precipitation events are transformed into daily streamflows by the soil moisture counting streamflow model using the synthetic daily maximum temperatures as input. The streamtlow model, called the Generalized Streamflow Simulation System, is modified and used for simulating baseflow recessions. The stochastic precipitation model, the stochastic temperature model and the deterministic streamflow models were combined with the deterministic sediment yield model for simulating sediment yield from the watershed. The modified Universal Soil Loss Equation was used for simulating sediment yield. Parameters at these models were determined from data taken on the Siran Watershed. A linear program was used for land use optimization to minimize sediment yield and maximize watershed production. Both optimization processes ended up with the same land use areas allocating the Maximum area for forests. The expected sediment yield was reduced by 2.5 times and production of watershed was doubled. Optimization of crops was accomplished by maximizing the production of agriculture lands. This resulted in the allocation of major agriculture land areas for apple orchards. By adopting the final optimized land use practices, the sediment yield can be reduced to half and watershed production can be increased six times. The results of the present study are encouraging and indicate that application of land use optimization methods for reducing sediment yields nave great potential on the study area and on other subwatersheds of the Tarbela and Manyla Watersheds. The methodology developed in this study can provide a useful tool for watershed managers to reduce sediment yields and increase the income of the local inhabitants by maximizing the agriculture production in other parts of the country.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Renewable Natural Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.