• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Anomalous concentrations of silica in ground water of the eastern San Joaquin Valley, California.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1991_501_sip1_w.pdf
    Size:
    11.04Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1991_501_sip1_w.pdf
    Download
    Author
    Cehrs, David, 1948-
    Issue Date
    1991
    Keywords
    Hydrology.
    Silica -- California.
    Groundwater -- Management.
    Committee Chair
    Davis, Stanley N.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Anomalous concentrations of silica in ground water of the eastern San Joaquin Valley originate from several diverse sources and are subsequently modified by recharge or diagenesis. Statistics, geochemical models, and column studies identified potential sources of silica in ground water and those parameters most important in influencing its distribution. Principal components analysis indicated inverse time and potassium as the parameters which best relate to silica. Inverse time relates to ground-water recharge while potassium relates to either the rhyolitic Friant Pumice, the hardpans of the eastern San Joaquin Valley, or diagenetic losses. A lumped parameter model suggests that recharge is responsible for the drop in silica concentrations beneath Fresno since 1971. The Madera County model indicates higher silica concentrations associated with the Friant Pumice, older geologic units with hardpans, finer grained sediments, and areas of ground-water discharge. Lower silica concentrations are associated with unweathered sediments, areas receiving recharge, and areas underlain by the Corcoran Clay. Column leaching studies produced silica concentrations from the Friant Pumice of up to 90 mg/1, Turlock Lake and Riverbank Formation hardpans from 40-50 mg/1, and younger Modesto Formation sediments from 10-40 mg/l. Spatially, volcanogenic sediments impart the highest silica concentrations to the ground water, 70-95 mg/1, and occur along the eastern margin of the valley, north of the San Joaquin River, or in San Joaquin River fluvial deposits. Iron-silica hardpans, found at various depths along the east side of the valley, are associated with silica concentrations of 40-70 mg/l. The typical arkosic sediments of the eastern valley have silica concentrations of 20-40 mg/l. Silica concentrations in ground water are modified by recharge and diagenetic processes. Either natural or artificial recharge having 4-16 mg/1 silica may lower ambient silica concentrations in ground water. Recharge occurs beneath some rivers and in transmissive paleochannel deposits; artificial sources include agricultural overirrigation and basin recharge. The down-gradient loss of silica to the sedimentary column, more prevalent at depth, apparently is by the sorption of silica on clays, the formation of clays, or deposition of amorphous silica.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Hydrology and Water Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.