• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Groundwater flow simulations and management under imprecise parameters

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1994_103_sip1_w.pdf
    Size:
    7.798Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1994_103_sip1_w.pdf
    Download
    Author
    Shafike, Nabil Girgis.
    Issue Date
    1994
    Keywords
    Hydrology.
    Groundwater flow -- Simulation methods.
    Groundwater -- Management.
    Fuzzy logic.
    Committee Chair
    Maddock, Thomas
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation considers modeling groundwater flow under imprecisely known parameters and managing a plume of contaminant. A new approach has been developed to study the effects of parameters uncertainty on the dependent variable, here the head. The proposed approach is developed based on fuzzy set theory combined with interval analysis. The kind of uncertainty modeled here is the imprecision associated with model parameters as a result of machine or human imprecision or lack of information. In this technique each parameter is described by a membership function. The fuzzy inputs into the model are in the form of intervals so are the outputs. The resulting head interval represents the change in the output due to interval inputs of model parameters. The proposed technique is illustrated using a two dimensional flow problem solved with a finite element technique. Three different cases are studied: homogeneous, mildly heterogeneous and highly heterogeneous transmissivity field. The groundwater flow problem analysis requires interval input values for the parameters, the output may be presented in terms of mean value, upper and lower bounds of the hydraulic head. The width of the resulting head interval can be used as a measure of uncertainty due to imprecise inputs. The degree of uncertainty associated with the predicted hydraulic head is found to increase as the width of the input parameters interval increases. Compared to Monte Carlo simulation approach, the proposed technique requires less computer storage and CPU time, however at this stage autocorrelation and crosscorolation are not configured in the presented formulation. In the plume containment problem two formulations are presented using the hydraulic gradient technique to control the movement of the contaminants. The first one is based on multiobjective analysis and the second, on fuzzy set theory. Multiobjective analysis yields a set of alternative strategies each of which satisfies the multiple objectives to a certain degree. Three different techniques have been used to choose a compromise strategy. Although they follow different principles, the same preferred strategies are selected. It is also noticed that rapid restoration results in a large pumping volumes and high costs. Using a fuzzy formulation for plume containment yields the optimum pumping rates and locations in addition to the membership function at each pumping location. The resulting membership functions at these pumping locations can be used to study the sensitivity of each location to a change in objective function and constraints bounds. Overall, both the fuzzy and multiobjective methodologies, presented in this dissertation, provide new and encouraging approaches to groundwater quality management.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Hydrology and Water Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.