• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Unconditional and conditional simulation of flow and transport in heterogeneous, variably saturated porous media

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1994_36_sip1_w.pdf
    Size:
    8.343Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1994_36_sip1_w.pdf
    Download
    Author
    Harter, Thomas.
    Issue Date
    1994
    Keywords
    Hydrology.
    Porous materials -- Fluid mechanics.
    Porous materials -- Mathematical models.
    Committee Chair
    Yeh, T.-C. Jim
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Spatial heterogeneity of geologic media leads to uncertainty in predicting both flow and transport in the vadose zone. In this work an efficient and flexible, combined analyticalnumerical Monte Carlo approach is developed for the analysis of steady-state flow and transient transport processes in highly heterogeneous, variably saturated porous media. The approach is also used for the investigation of the validity of linear, first order analytical stochastic models. With the Monte Carlo analysis accurate estimates of the ensemble conductivity, head, velocity, and concentration mean and covariance are obtained; the statistical moments describing displacement of solute plumes, solute breakthrough at a compliance surface, and time of first exceedance of a given solute flux level are analyzed; and the cumulative probability density functions for solute flux across a compliance surface are investigated. The results of the Monte Carlo analysis show that for very heterogeneous flow fields, and particularly in anisotropie soils, The linearized, analytical predictions of soil water tension and soil moisture flux become erroneous. Analytical, linearized Lagrangian transport models also overestimate both the longitudinal and the transverse spreading of the mean solute plume in very heterogeneous soils and in dry soils. A combined analytical-numerical conditional simulation algorithm is developed to estimate the impact of in-situ soil hydraulic measurements on reducing the uncertainty of concentration and solute flux predictions. In soils with large spatial variability and in dry soils, soil water tension measurements significantly reduce the uncertainty in the predicted solute concentration. Saturated hydraulic conductivity data are valuable in relatively wet soils. A combination of tension and saturated hydraulic conductivity data gives the best results, especially if some data are available on the unsaturated hydraulic conductivity function. It is also found that if soil heterogeneity is large, the conditional spatial moments of inertia of the mean concentration plume and the conditional mean breakthrough curves are poor means of depicting the actual solute plume distribution and the actual solute flux. Nevertheless, conditional simulation is one of the most rational approaches for modeling unsaturated flow and transport, if in-situ data are available.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Hydrology and Water Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.