Irrigation methods and management effects on leaf lettuce (Lactuca sative, L.) water use and nitrogen leaching
Name:
azu_td_hy_e9791_1995_366_sip1_w.pdf
Size:
5.122Mb
Format:
PDF
Description:
azu_td_hy_e9791_1995_366_sip1_w.pdf
Author
da Silva, Elio Lemos,1955-Issue Date
1995Committee Chair
Yitayew, Muluneh
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Comparisons between subsurface trickle-(drip) and furrow-irrigated leaf lettuce, scheduled by AZSCHED and by tensiometers were made to evaluate their effects on crop coefficient, crop water use, nitrogen uptake and nitrogen leaching. A field experiment with four treatments and five replications was conducted during the fall-winter 1994-95 growing season at The University of Arizona's Campus Agricultural Center. Results showed that there was no significant difference at 95% confidence level among treatments, with respect to crop coefficients. A Fourier series was fitted to represent the Growing Degree Days (GDD)--Crop coefficient (Kc) relationship that can be recommended for irrigation scheduling of leaf lettuce at any geographical situation and planting date. A table of Kc for "days after thinning" was derived for Tucson-AZ. Marketable yield averaged 25.0 Mg ha⁻¹ with crop water use efficiency of 9.8 Kg of marketable yield per cubic meter of water (including rainfall). The 1994-95 growing season was not typical for Tucson-AZ. There was 181 mm of rainfall compared to the long term average of 91 mm. Based on the studied condition we could also conclude that, for supplementary irrigation, that is typical of humid areas, there is no difference if one irrigate leaf lettuce by short-end-closed furrow or subsurface - trickle irrigation, scheduled either by tension of 20 kPa or AZSCHED software, concerning yield and nitrogen uptake. The risk of nitrogen leaching is higher for furrow irrigation systems than for drip.Type
Dissertation-Reproduction (electronic)text
Degree Name
Ph. D.Degree Level
doctoralDegree Program
Agricultural & Biosystems EngineeringGraduate College