• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Daily estimation of local evapotranspiration using energy and water balance approaches

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1995_413_sip1_w.pdf
    Size:
    5.839Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1995_413_sip1_w.pdf
    Download
    Author
    Rim, Chang-Soo.
    Issue Date
    1995
    Keywords
    Hydrology.
    Evapotranspiration.
    Soil moisture.
    Water balance (Hydrology)
    Committee Chair
    Gay, Lloyd W.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Meteorological and environmental (i.e. soil water content) data measured from semiarid watersheds (Lucky Hills and Kendall) during the summer rainy and winter periods were used to study the interrelationships between variables, and to evaluate the effects of variables on the daily estimation of actual evapotranspiration (AET). The relationship between AET and potential evapotranspiration (PET) as a function of an environmental factor was the major consideration of this research. The relationship between AET and PET as a function of soil water content as suggested by Thornthwaite-Mather, Morton and Priestley-Taylor was studied to determine its applicability to the study area. Furthermore, multiple linear regression (MLR) analysis was employed to evaluate the order of importance of the meteorological and soil water factors involved. Finally, the information gained was used for MLR model development. The results of MLR analysis showed that the combined effects of available energy, soil water content and wind speed were responsible for 77 % of the observed variations in AET at Lucky Hills watershed and 70 % at Kendall watershed during the summer rainy period. The analyses also indicated that the combined effects of available energy, vapor pressure deficit and wind speed were responsible for 70 % of the observed variations in AET at Lucky Hills watershed and 72 % at Kendall watershed during the winter period. However, the test results of three different approaches, using the relationships between AET and PET as a function of soil water content indicated some inadequacy. The low correlation between PET, AET, and soil moisture conditions raised some doubt concerning the validity of methods developed elsewhere, and indicated the effects of energy availability on the relationship between PET, AET, and soil water content regardless of the soil water condition. In contrast, agreement between observed AET and estimated AET from MLR models during the summer rainy and winter periods at both watersheds indicated that MLR models can give reasonable estimates of AET, at least under the climatic conditions in which the formulae were developed.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Renewable Natural Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.