• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Biophysical interpretation of spectral indices for semi-arid soil and vegetation types in Niger.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1995_93_sip1_w.pdf
    Size:
    10.96Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1995_93_sip1_w.pdf
    Download
    Author
    van Leeuwen, Willem Jan Dirk,1961-
    Issue Date
    1995
    Keywords
    Hydrology.
    Watershed management -- Arizona.
    Soils -- Analysis.
    Committee Chair
    Huete, A. R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In situ radiometric field data and data simulated with a radiative transfer model were used to evaluate the performance and biophysical interpretation of spectral indices Concurrently with remotely sensed measurements, temporal biophysical measurements for different vegetation types for two semi-arid regions in Niger were made, including leaf area index (LAI), fraction of absorbed photosynthetically active radiation (fAPAR), percent vegetation cover, and biomass. The spectral dynamics of vegetation and soil were characterized at the leaf and canopy scale by optical measurements under many adverse conditions, including variability in vegetation optical and structural properties, soil reflectance properties, sun and view geometry and atmospheric perturbations. The spectral indices evaluated in this research comprised spectral vegetation indices and spectral mixture model indices, computed from spectral reflectances. The performance of different vegetation indices and their sensitivity to green and non-green vegetation and soils were compared and quantified by utilizing estimates of percent relative error in spectral vegetation indices, and estimates of vegetation equivalent noise expressed in terms of biophysical parameters (LAI, fAPAR). The soil adjusted vegetation index (SAVI) and modified normalized vegetation index (MIND VI) were improvements over the normalized difference vegetation index (NDVI), but were still sensitive to many perturbing variables such as soil and vegetation distribution, soil optical properties, litter and green vegetation optical properties and leaf angle distribution. The spectral mixture model indices were designed to be sensitive to vegetation, soil and non-green vegetation components and were shown to provide useful surface information that can aid in minimizing the noise in spectral vegetation indices, and also in improving their biophysical interpretation. Vegetation and soil brightness imagery were created from remotely sensed reflectance data, by calibrating the spectral mixture model with the data generated with a radiative transfer model. The effect of standing litter on spectral indices was shown to possibly cause both an increase and a decrease in the vegetation index, depending on the coupled spectral and structural properties of litter, green vegetation and soil. In situ measurements confirmed the results obtained from the analysis of data sets generated with a radiative transfer model. The implications of the effect of perturbing variables on spectral indices were also discussed.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Soil and Water Science
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.