• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Perched water in fractured, welded tuff : mechanisms of formation and characteristics of recharge

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1997_87_sip1_w.pdf
    Size:
    18.15Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1997_87_sip1_w.pdf
    Download
    Author
    Woodhouse, Elizabeth Gail.
    Issue Date
    1997
    Keywords
    Hydrology.
    Hydrogeology -- Arizona -- Apache Leap Research Site.
    Hydrogeology -- Nevada -- Yucca Mountain.
    Groundwater recharge -- Arizona -- Apache Leap Research Site.
    Groundwater recharge -- Nevada -- Yucca Mountain.
    Volcanic ash, tuff, etc. -- Weldability.
    Committee Chair
    Bassett, Randy L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Perched water zones have been identified in the fractured, welded tuff in the semiarid to arid environments of Yucca Mountain, Nevada and near Superior, Arizona. An understanding of the formation of such zones is necessary in order to predict where future perched water might form at Yucca Mountain, the proposed site of a high-level nuclear waste repository. The formation or growth of a perched zone above a repository is one factor of the factors to be considered in the risk assessment of the Yucca Mountain site. The Apache Leap Research Site (ALRS) near Superior, Arizona is a natural analog to the Yucca Mountain site in terms of geology, hydrology, and climate. Perched water has been identified over an area of at least 16 km² in the Apache Leap Tuff, a mid- Miocene fractured, welded ash-flow tuff. A primary goal of this investigation was to characterize the physical and hydrologic properties of the tuff in the region above and including the perched zone, and to evaluate those characteristics to develop a model for a perching mechanism in the tuff. A second goal was to determine what fraction of water entering a watershed reaches the subsurface, to potentially recharge the perched zone. The Apache Leap Tuff has been subject to considerable devitrification and vapor phase crystallization, which dominate the character of the rock. With depth to the perched zone, pumice fragments become increasingly flattened and segregated; the pumice fragments are the primary locations of porosity in the rock, therefore porosity also becomes greatly reduced with depth, to the extent that the rock matrix is virtually impermeable at the perched water zone. Fractures are the primary pathways by which water moves through the rock; fracture hydraulic conductivity values were determined to be nine orders of magnitude greater than measured matrix hydraulic conductivity at the perched zone. An increase in fracture filling by silica mineralization beneath the perched zone reduces the secondary permeability, enhancing the formation of perched water. Thus, the primary mechanisms for the formation of the perched zone include fracture flow bringing water into the subsurface, combined with extremely low matrix hydraulic conductivity at depth, and reduced secondary permeability by filled fractures and lower fracture density. Water budgets were calculated for two years in a 51.4-ha watershed. Direct measurements were made of precipitation and runoff', evapotranspiration was both directly measured, and modeled based on measurement of a number of weather parameters. Infiltration was calculated as the residual of precipitation after runoff and evapotranspiration were removed. Infiltration was determined to be less than 10% of the annual water budget; evapotranspiration removes on the order of 90% of precipitation on an annual basis.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Hydrology and Water Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.