• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Evaluation of the topologic instantaneous unit hydrography on rural watersheds in Southeast Arizona

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1998_357_sip1_w.pdf
    Size:
    8.078Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1998_357_sip1_w.pdf
    Download
    Author
    Lantz, Douglas Gregory,1960-
    Issue Date
    1998
    Keywords
    Hydrology.
    Hydrography -- Arizona.
    Watersheds -- Arizona.
    Renewable natural resources -- Arizona.
    Committee Chair
    Hawkins, Richard H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Discharge hydrographs computed from the theory of linear flow through topologically random channel networks are compared to observed hydrographs on nine arid-region watersheds, with drainage areas ranging from 0.33 hectares to 1363 hectares, at the Walnut Gulch Experimental Watershed in southeast Arizona. Over 90 rainfall-runoff events are tested, with extremes ranging from 12.5 mm to 71 5 mm for rainfall depth, 0.4 mm to 50 mm for runoff volume, and 0.031 ems to 73.5 ems for peak discharge. Topologic Instantaneous Unit Hydrographs (TIUH's) are estimated from topologic and link-length parameters, and a scaling parameter. The topologic information is parameterized as the number of first-order links (magnitude) and the link-length distribution is parameterized by the mean. Both can be measured in the field or from topographic mapping and aerial photography. The scaling parameter is the "effective" kinematic celerity, which is a single-valued estimate of the kinematic celerity of the flow through the channel network for the duration of the event. The TIUH's lead to unit hydrographs, which are convolved with temporally distributed rainfall excess patterns computed using both the 0 index and the curve number, to give composite watershed hydrographs. Effective kinematic celerities are varied until the composite hydrographs match the observed hydrographs in terms of peak discharge and hydrograph efficiency. Results indicate that the TIUH approximately reproduces observed hydrographs, with calibrated effective kinematic celerities that fall within a reasonable range of magnitudes. Agreement between simulated and observed hydrographs is improved by introducing a lag to account for overland travel times to the channel network. The magnitude of the calibrated effective kinematic celerity is significantly related to watershed characteristics, including area, length, and slope. Regression equations are developed and the resulting predicted celerities are combined with map measured topologic and link-length parameters to give simulated hydrographs that approximately match the observed. Magnitude and link-length combine into a single parameter that is consistent across map scales and has the potential to be a watershed descriptor. Calibrated values of effective kinematic celerity vary little across map scales, suggesting that adequate results are obtained without additional expense for highly detailed mapping.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Renewable Natural Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.