• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Predicting tracer and contaminant transport with the stratified aquifer approach

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_1999_426_sip1_w.pdf
    Size:
    5.166Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_1999_426_sip1_w.pdf
    Download
    Author
    Blue, Julie Elena.
    Issue Date
    1999
    Keywords
    Hydrology.
    Groundwater tracers -- Mathematical models.
    Groundwater -- Pollution.
    Aquifers.
    Sediment transport -- Mathematical models.
    Committee Chair
    Brusseau, Mark L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The assumption of perfect stratification in an aquifer has been widely used in solute-transport modeling studies. This assumption is especially useful for applied studies where limited site characterization data are available, but geologic well logs indicate significant layering. Chapter 3 investigates the issue of vertical sampling density via a sensitivity analysis of the number of aquifer layers used in a model of tracer transport through a heterogeneous synthetic aquifer. Tracer breakthrough in the synthetic aquifer is predicted by layered models. Given a variance of ln K of 2 and an exponential covariance function, sampling the synthetic aquifer at more than 12 elevations did not produce any significant improvement in the predictions. Even six sampling points, however, produced more accurate predictions of transport compared to a full-aquifer, homogeneous approach employing a local-scale dispersivity. Chapter 4 presents and interprets data from a dual-well, forced-gradient tracer experiment conducted in a confined aquifer underlying a contaminant source zone of a Superfund site. Tracer breakthrough was monitored at an extraction well and at four levels of a centerline monitoring well. A perfectly stratified numerical transport model based on multi-level data successfully predicted tracer breakthrough at the extraction well. Given the added vertical resolution associated with the layered model, it was possible to use dispersivity values more than an order of magnitude lower than the value used in a vertically integrated model. It is expected that the multi-layer model would allow for more robust analyses of solute transport at the site. In Chapter 5, TCE elution during the same dual-well experiment is predicted with a stratified numerical model incorporating rate-limited desorption, rate-limited diffusion, and rate-limited dissolution of nonaqueous phase liquid (NAPL). Based on model results, initial mass calculations, and other indirect lines of evidence, it is concluded that NAPL is the primary cause of rate limitations for TCE transport at the site. NAPL presence is the primary reason a large pump-and-treat system at the site has failed to reduce contaminant concentrations to federal drinking water standards. Alternative remediation technologies are thus necessary for restoring the aquifer, especially in the contaminant source zone.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Hydrology and Water Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.