Show simple item record

dc.contributor.authorBlue, Julie Elena.
dc.creatorBlue, Julie Elena.en_US
dc.date.accessioned2011-11-28T13:33:07Z
dc.date.available2011-11-28T13:33:07Z
dc.date.issued1999en_US
dc.identifier.urihttp://hdl.handle.net/10150/191243
dc.description.abstractThe assumption of perfect stratification in an aquifer has been widely used in solute-transport modeling studies. This assumption is especially useful for applied studies where limited site characterization data are available, but geologic well logs indicate significant layering. Chapter 3 investigates the issue of vertical sampling density via a sensitivity analysis of the number of aquifer layers used in a model of tracer transport through a heterogeneous synthetic aquifer. Tracer breakthrough in the synthetic aquifer is predicted by layered models. Given a variance of ln K of 2 and an exponential covariance function, sampling the synthetic aquifer at more than 12 elevations did not produce any significant improvement in the predictions. Even six sampling points, however, produced more accurate predictions of transport compared to a full-aquifer, homogeneous approach employing a local-scale dispersivity. Chapter 4 presents and interprets data from a dual-well, forced-gradient tracer experiment conducted in a confined aquifer underlying a contaminant source zone of a Superfund site. Tracer breakthrough was monitored at an extraction well and at four levels of a centerline monitoring well. A perfectly stratified numerical transport model based on multi-level data successfully predicted tracer breakthrough at the extraction well. Given the added vertical resolution associated with the layered model, it was possible to use dispersivity values more than an order of magnitude lower than the value used in a vertically integrated model. It is expected that the multi-layer model would allow for more robust analyses of solute transport at the site. In Chapter 5, TCE elution during the same dual-well experiment is predicted with a stratified numerical model incorporating rate-limited desorption, rate-limited diffusion, and rate-limited dissolution of nonaqueous phase liquid (NAPL). Based on model results, initial mass calculations, and other indirect lines of evidence, it is concluded that NAPL is the primary cause of rate limitations for TCE transport at the site. NAPL presence is the primary reason a large pump-and-treat system at the site has failed to reduce contaminant concentrations to federal drinking water standards. Alternative remediation technologies are thus necessary for restoring the aquifer, especially in the contaminant source zone.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectHydrology.en_US
dc.subjectGroundwater tracers -- Mathematical models.en_US
dc.subjectGroundwater -- Pollution.en_US
dc.subjectAquifers.en_US
dc.subjectSediment transport -- Mathematical models.en_US
dc.titlePredicting tracer and contaminant transport with the stratified aquifer approachen_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.typetexten_US
dc.contributor.chairBrusseau, Mark L.en_US
dc.identifier.oclc224480418en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberConklin, Martha H.en_US
dc.contributor.committeememberWarrick, Arthur W.en_US
dc.contributor.committeememberLong, Austinen_US
thesis.degree.disciplineHydrology and Water Resourcesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh. D.en_US
dc.description.notehydrology collectionen_US
refterms.dateFOA2018-08-24T09:17:39Z
html.description.abstractThe assumption of perfect stratification in an aquifer has been widely used in solute-transport modeling studies. This assumption is especially useful for applied studies where limited site characterization data are available, but geologic well logs indicate significant layering. Chapter 3 investigates the issue of vertical sampling density via a sensitivity analysis of the number of aquifer layers used in a model of tracer transport through a heterogeneous synthetic aquifer. Tracer breakthrough in the synthetic aquifer is predicted by layered models. Given a variance of ln K of 2 and an exponential covariance function, sampling the synthetic aquifer at more than 12 elevations did not produce any significant improvement in the predictions. Even six sampling points, however, produced more accurate predictions of transport compared to a full-aquifer, homogeneous approach employing a local-scale dispersivity. Chapter 4 presents and interprets data from a dual-well, forced-gradient tracer experiment conducted in a confined aquifer underlying a contaminant source zone of a Superfund site. Tracer breakthrough was monitored at an extraction well and at four levels of a centerline monitoring well. A perfectly stratified numerical transport model based on multi-level data successfully predicted tracer breakthrough at the extraction well. Given the added vertical resolution associated with the layered model, it was possible to use dispersivity values more than an order of magnitude lower than the value used in a vertically integrated model. It is expected that the multi-layer model would allow for more robust analyses of solute transport at the site. In Chapter 5, TCE elution during the same dual-well experiment is predicted with a stratified numerical model incorporating rate-limited desorption, rate-limited diffusion, and rate-limited dissolution of nonaqueous phase liquid (NAPL). Based on model results, initial mass calculations, and other indirect lines of evidence, it is concluded that NAPL is the primary cause of rate limitations for TCE transport at the site. NAPL presence is the primary reason a large pump-and-treat system at the site has failed to reduce contaminant concentrations to federal drinking water standards. Alternative remediation technologies are thus necessary for restoring the aquifer, especially in the contaminant source zone.


Files in this item

Thumbnail
Name:
azu_td_hy_e9791_1999_426_sip1_w.pdf
Size:
5.166Mb
Format:
PDF
Description:
azu_td_hy_e9791_1999_426_sip1_w.pdf

This item appears in the following Collection(s)

Show simple item record