• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Climate-correlative modeling of phytogeography at the watershed scale.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_2000_201_sip1_w.pdf
    Size:
    2.879Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_2000_201_sip1_w.pdf
    Download
    Author
    Drake, Samuel Edward, 1960-
    Issue Date
    2000
    Keywords
    Hydrology.
    Watershed management -- Arizona.
    Committee Chair
    Marsh, Stuart E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The goal of this research was to develop a watershed-scale model for predicting changes in plant species distribution and abundance (phytogeography) that might occur as a result of changes in climatic factors with global warming. The model was designed: 1) to be spatially explicit and applicable across the entire watershed; 2) to apply to a number of particular species rather than general vegetation types; 3) to predict abundance as well as presence/absence; and 4) to work with simple environmental data, but reflect a biological rationale. Correlations were sought between current phytogeography in the watershed and the synoptic climate variables mean annual temperature, total annual precipitation and cool-/warm-season precipitation ratio. The contribution of edaphic and topographic variables to correlative models was examined and found to be negligible. The correlations established for current conditions were extended to hypothetical future conditions of changed climate in which the values of the variables were manipulated and the model run to produce predictions of altered future phytogeographies. Twenty-seven different hypothetical climate scenarios were modeled, incorporating a 1°C or 2°C rise in temperature with as much as a 10% increase or decrease in seasonal precipitation. Spatial articulation of the model was achieved through raster analysis of gridcell based data layers in a geographic information system. Primary input layers were a series of high-resolution (360x360m) interpolated climate-variable surfaces and a geographically referenced database of plant species presence and abundance derived from an aerial videography sample of the watershed. Logistic regression analysis was used to calculate, for a given set of conditions, the most probable state (present/absent) and abundance class for ten plant species at each grid-cell location in the watershed. Fragmentation of species' distributions before and after change was examined. Results for all studied species showed marked changes in distribution and abundance with temperature rise. Desert species will likely increase in abundance and occupiable area as forest and woodland species decrease, but much depends on the interaction of precipitation with temperature. Model predictions are conservative compared with paleoecological evidence of past changes.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Arid Lands Resource Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.