• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Numerical inverse interpretation of pneumatic tests in unsaturated fractured tuffs at the Apache Leap Research Site

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_2000_95_sip1_w.pdf
    Size:
    4.092Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_2000_95_sip1_w.pdf
    Download
    Author
    Vesselinov, Velimir Valentinov.
    Issue Date
    2000
    Keywords
    Hydrology.
    Volcanic ash, tuff, etc. -- Arizona -- Superior Region.
    Volcanic ash, tuff, etc. -- Permeability.
    Committee Chair
    Neuman, Shlomo P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A three-dimensional stochastic numerical inverse model has been developed for characterizing the properties of unsaturated fractured medium through analysis of singleand cross-hole pneumatic tests. Over 270 single-hole [Guzman et al., 1996] and 44 cross-hole pneumatic tests [Illman et al., 1998; Inman, 1999] were conducted in 16 shallow vertical and slanted boreholes in unsaturated fractured tuffs at the Apache Leap Research Site (ALRS), Arizona. The single-hole tests were interpreted through steady-state [Guzman et al., 1996] and transient [Illman and Neuman, 2000b] analytical methods. The cross-hole tests were interpreted by analytical type-curves [Illman and Neuman, 2000a]. I describe a geostatistical analysis of the steady-state single-hole data, and numerical inversion of transient single-hole and cross-hole data. The geostatistical analysis of single-hole steady-state data yields information about the spatial structure of air permeabilities on a nominal scale of 1 m. The numerical inverse analysis of transient pneumatic test data is based on the assumption of isothermal single-phase airflow through a locally isotropic, uniform or non-uniform continuum. The stochastic inverse model is based on the geostatistical pilot point method of parameterization [de Marsily, 1978], coupled with a maximum likelihood definition of the inverse problem [Carrera and Neuman, 1986a]. The model combines a finite-volume flow simulator, FEHM [Zyvoloski et al., 1997], an automatic mesh generator, X3D [Trease et al., 1996], a parallelized version of an automatic parameter estimator, PEST [Doherty et al., 1994], and a geostatistical code, GSTAT [Pebesma and Wesseling, 1998]. The model accounts directly for the ability of all borehole intervals to store and conduct air through the system; solves the airflow equations in their original nonlinear form accounting for the dependence of air compressibility on absolute air pressure; can, in principle, account for atmospheric pressure fluctuations at the soil surface; provides kriged estimates of spatial variations in air permeability and air-filled porosity throughout the tested fractured rock volume; and is applied simultaneously to pressure data from multiple borehole intervals as well as to multiple cross-hole tests. The latter amounts to three-dimensional stochastic imaging, or pneumatic tomography, of the rock as proposed by Neuman [1987] in connection with cross-hole hydraulic tests in fractured crystalline rocks near Oracle, Arizona. The model is run in parallel on a supercomputer using 32 processors. Numerical inversion of single-hole pneumatic tests allows interpreting multiple injection-step and recovery data simultaneously, and yields information about air permeability, air-filled porosity, and dimensionless borehole storage coefficient. Some of this cannot be accomplished with type-curves [Inman and Neuman, 2000b]. Air permeability values obtained by my inverse method agree well with those obtained by steady-state and type-curve analyses. Both stochastic inverse analysis of cross-hole data and geostatistical analysis of single-hole data, yield similar geometric mean and similar spatial pattern of air permeability. However, I observe a scale effect in both air permeability and air-filled porosity when I analyze cross-hole pressure records from individual monitoring intervals one by one, while treating the medium as being uniform; both pneumatic parameters have a geometric mean that is larger, and a variance that is smaller, than those obtained by simultaneous stochastic analysis of multiple pressure records. Overall, my analysis suggests that (a) pneumatic pressure behavior of unsaturated fractured tuffs at the ALRS can be interpreted by treating the rock as a continuum on scales ranging from meters to tens of meters; (b) this continuum is representative primarily of interconnected fractures; (c) its pneumatic properties nevertheless correlate poorly with fracture density; and (d) air permeability and air-filled porosity exhibit multiscale random variations in space.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Hydrology and Water Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.