• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Statistics

    Display statistics

    Multiscale anaylses of permeability in porous and fractured media

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_2002_321_sip1_w.pdf
    Size:
    11.93Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_2002_321_sip1_w.pdf
    Download
    Author
    Hyun, Yunjung.
    Issue Date
    2002
    Keywords
    Hydrology.
    Porous materials -- Permeability -- Mathematical models.
    Rocks -- Fracture -- Mathematical models.
    Committee Chair
    Neuman, Shlomo P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    It has been shown by Neuman [1990], Di Federico and Neuman [1997, 1998a,b] and Di Federico et al. [1999] that observed multiscale behaviors of subsurface fluid flow and transport variables can be explained within the context of a unified stochastic framework, which views hydraulic conductivity as a random fractal characterized by a power variogram. Any such random fractal field is statistically nonhomogeneous but possesses homogeneous spatial increments. When the field is statistically isotropic, it is associated with a power variogram γ(s) = Cs²ᴴ where C is a constant, s is separation distance, and If is a Hurst coefficient (0 < H< 1). If the field is Gaussian it constitutes fractional Brownian motion (fBm). The authors have shown that the power variogram of a statistically isotropic or anisotropic fractal field can be constructed as a weighted integral from zero to infinity of exponential or Gaussian vario grams of overlapping, homogeneous random fields (modes) having mutually uncorrelated increments and variance proportional to a power 2H of the integral (spatial correlation) scale. Low- and high-frequency cutoffs are related to length scales of the sampling window (domain) and data support (sample volume), respectively. Intermediate cutoffs account for lacunarity due to gaps in the multiscale hierarchy, created by a hiatus of modes associated with discrete ranges of scales. In this dissertation, I investigate the effects of domain and support scales on the multiscale properties of random fractal fields characterized by a power variogram using real and synthetic data. Neuman [1994] and Di Federico and Neuman [1997] have concluded empirically, on the basis of hydraulic conductivity data from many sites, that a finite window of length-scale L filters out (truncates) all modes having integral scales λ larger than λ = μL where μ ≃ 1/3. I confii in their finding computationally by generating truncated fBm realizations on a large grid, using various initial values of μ, and demonstrating that μ ≃ 1/3 for windows smaller than the original grid. My synthetic experiments also show that generating an fl3m realization on a finite grid using a truncated power variogram yields sample variograms that are more consistent with theory than those obtained when the realization is generated using a power variogram. Interpreting sample data from such a realization using wavelet analysis yields more reliable estimates of the Hurst coefficient than those obtained when one employs variogram analysis. Di Federico et al. [1997] developed expressions for the equivalent hydraulic conductivity of a box-shaped support volume, embedded in a log-hydraulic conductivity field characterized by a power variogram, under the action of a mean uniform hydraulic gradient. I demonstrate that their expression and empirically derived value of μ ≃ 1/3 are consistent with a pronounced permeability scale effect observed in unsaturated fractured tuff at the Apache Leap Research Site (ALRS) near Superior, Arizona. I then investigate the compatibility of single-hole air permeability data, obtained at the ALRS on a nominal support scale of about 1 m, with various scaling models including fBm, fGn (fractional Gaussian noise), fLm (fractional Lévy motion), bfLm (bounded fractional Lévy motion) and UM (Universal Multifractals). I find that the data have a Lévy-like distribution at small lags but become Gaussian as the lag increases (corresponding to bfLm). Though this implies multiple scaling, it is not consistent with the UM model, which considers a unique distribution. If one nevertheless applies a UM model to the data, one obtains a very small codimension which suggests that multiple scaling is of minor consequence (applying the UM model to permeability rather than log-permeability data yields a larger codimension but is otherwise not consistent with these data). Variogram and resealed range analyses of the log-permeability data yield comparable estimates of the Hurst coefficient. Resealed range analysis shows that the data are not compatible with an fGn model. I conclude that the data are represented most closely by a truncated fBm model.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Hydrology and Water Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.