• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Geochemical and isotopic mixing models : two case studies in a snow-dominated and semi-arid environment

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_hy_e9791_2003_187_sip1_w.pdf
    Size:
    6.299Mb
    Format:
    PDF
    Description:
    azu_td_hy_e9791_2003_187_sip1_w.pdf
    Download
    Author
    Huth, Anne M. Kramer.
    Issue Date
    2003
    Keywords
    Hydrology.
    Hydrometeorology -- California -- Mathematical models.
    Hydrometeorology -- Arizona -- Mathematical models.
    Snowmelt -- California.
    Arid regions -- Arizona -- Climate.
    Soil moisture -- California.
    Soil moisture -- Arizona.
    Runoff -- California.
    Runoff -- Arizona.
    Committee Chair
    Bales, Roger C.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The influence of climate and antecedent moisture conditions on hydrological and biogeochemical fluxes was studied and contrasted in three nested, high-elevation, snowmelt-dominated catchments in the Sierra Nevada, California and one basin-floor, semi-arid catchment in southeastern Arizona. Investigations were completed within a different two-year period at each site, with the second year being climatically different (typically drier) than the first. Spring snowmelt, widespread winter frontal precipitation, and episodic summer rains induce surface water flow in these catchments, though the timing and magnitude of nutrient redistribution among soil and stream compartments varies in each. Surface water flow from spring snowmelt in high-elevation catchments travels through the subsurface or across the surface as direct runoff A more typical process producing surface water flow in semi-arid catchments is flooding during episodic or widespread rainfall. Hydrograph separations at Emerald Lake, Topaz Lake and Marble Fork catchments in Sequoia National Park, California, revealed that the majority of snowmelt flowed through soil before entering the stream in both average and highsnow years. The Emerald Lake watershed had a higher fraction of old water in its outflow in the average accumulation year because of the previous year's high accumulation and longer melt season. A mixing model analysis performed of the upper San Pedro River, Arizona, for wet and dry years showed that summer flood hydrographs were composed mainly of precipitation and surface runoff in both years, though a higher soil-water input occurred in the wetter year and in early season floods in the dry year. Stream and soil water nitrate concentrations were higher during floods in the dry year. Early season floods in the dry year exhibited more variability in stream water nitrate and sulfate, whereas late season flood concentrations reflected a well-mixed system and therefore less variation of these species during flood hydrographs. These data showed that periods of below average precipitation preceding major runoff periods result both in less soil water and solute export during summer floods in basin-floor catchments and less direct snowmelt in high-elevation catchments. Hydrologic and solute export in each catchment, despite their differing geographical locations, responds in similar ways to climate variability.
    Type
    Dissertation-Reproduction (electronic)
    text
    Degree Name
    Ph. D.
    Degree Level
    doctoral
    Degree Program
    Hydrology and Water Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.