• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    SYNTHESIS AND CHARACTERIZATION OF CUxS NANOPARTICLES FOR SOLAR CELL APPLICATION

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10463_sip1_m.pdf
    Size:
    44.11Mb
    Format:
    PDF
    Description:
    azu_etd_10463_sip1_m.pdf
    Download
    Author
    Head, Jeff
    Issue Date
    2009
    Keywords
    Chemistry
    Advisor
    Armstrong, Neal R.
    Committee Chair
    Armstrong, Neal R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Chalcocite, Cu2S, and djurleite, Cu1.94-1.96S, copper sulfide nanoparticles have been synthesized. They have been characterized using a multitude of methods. Using x-ray photoelectron spectroscopy (XPS), the binding energies of the core electrons have been measured for each type of nanoparticle. Using powder x-ray diffraction and ultraviolet-visible spectroscopy, the crystal structures have been determined and it has been found that the chalcocite nanoparticles have indirect band gap transitions, whereas the djurleite nanoparticles have direct band gap transitions. Using electron microscopy it has been found that the nanoparticles are both single crystalline with size distributions that vary between 8 and 20 nm for the djurleite nanoparticles, and between 10 and 200 nm for the chalcocite nanoparticles. The djurleite nanoparticles have been incorporated into a solar cell device in combination with C60 and using ultraviolet photoelectron spectroscopy (UPS), the band structure of the nanoparticles has been evaluated.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.