• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Synthesis and Characterization of Ferromagnetic Polymer-Coated Cobalt Nanoparticles in Multi-Gram Quantities

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10655_sip1_m.pdf
    Size:
    32.98Mb
    Format:
    PDF
    Description:
    azu_etd_10655_sip1_m.pdf
    Download
    Author
    Rasmussen, Sarah Grace
    Issue Date
    2009
    Keywords
    cobalt
    nanoparticles
    Advisor
    Pyun, Jeffrey
    Committee Chair
    Pyun, Jeffrey
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Ferromagnetic cobalt nanoparticles (CoNPs) are of interest due to their inherent dipolar properties which enable one-dimensional (1-D) nanoparticle self-assembly. As their magnetic properties change drastically with their size, the ability to selectively synthesize monodisperse metallic nanoparticles of varying diameters remains a crucial challenge. Although there have been extensive studies performed on various metallic nanoparticles yielding superparamagnetic materials (such as Fe3O4, Fe2O3, Co metals), research concerning the synthesis of ferromagnetic materials has only recently resurged within the last 20 years.In this work, methods for the synthesis of ferromagnetic cobalt nanoparticles on multi-gram scales were investigated. A one-pot synthetic method which produced up to 4 grams of cobalt nanoparticles per reaction was developed, and it was also found that this reaction had a direct correlation with particle size and reaction temperature, allowing for the large-scale synthesis of polystyrene-coated cobalt nanoparticles of pre-selected diameters.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.