• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    POROUS PHOSPHOLIPID NANOSHELL PROTECTED APTAMER SENSOR FOR URINE MERCURY DETECTION

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11312_sip1_m.pdf
    Size:
    1.433Mb
    Format:
    PDF
    Description:
    azu_etd_11312_sip1_m.pdf
    Download
    Author
    Li, Zhen
    Issue Date
    2010
    Keywords
    aptamer
    mercury
    phospholipids
    sensor
    vesicles
    Advisor
    Aspinwall, Craig A
    Committee Chair
    Aspinwall, Craig A
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Mercury exposure has been related to neurological diseases and poisoning. Quantification of mercury in biological fluids, such as serum or urine is an important diagnostic method for mercury exposure. We have developed an aptamer-encapsulated porous phospholipid nanoshell (PPN) sensor for sensing mercury in urine using a modified 15-mer single strand DNA.1 The probe is protected from DNAse and other biofouling species by encapsulation within the porous liposomes composed of mixed phospholipids, allowing direct application of the aptamer in biological fluids containing DNAse and other biofouling materials. The encapsulated sensor was directly tested in urine samples at physiological pH. We were able to detect below 100 ppb (500 nM) Hg2+ in urine (urine mercury threshold set by Biologischer Arbeitstoff Toleranz Wert or BAT)1 with no sample preparation other than pH adjustment. These results suggest that porous phospholipid nanoshells (PPNs) can serve as a general-purpose protection scaffold for biological sensing.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.