• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Estimation of Jitter Effects in Oscillators and Frequency Synthesizers Due to Prototypical Perturbation Sources

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1094_sip1_m.pdf
    Size:
    3.233Mb
    Format:
    PDF
    Description:
    azu_etd_1094_sip1_m.pdf
    Download
    Author
    Janczak, Teresa Krystyna
    Issue Date
    2005
    Keywords
    Voltage Controlled Oscillators
    Phase Locked Loops
    Electronic circuits -noise
    Electronic circuits - simulation
    Jitter
    Advisor
    Palusinski, Olgierd A.
    Committee Chair
    Palusinski, Olgierd A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The Phase Locked Loops (PLLs) are widely used in contemporary electronic systems for frequency synthesis, clock recovery, frequency multiplication and other purposes. Because of continuous increase in operating frequency of clocking systems the requirements on the clock spectral purity and low jitter became very demanding and are one of major designers' concerns.Frequency synthesizers used in microprocessors are integrated on the same substrate as the rest of the circuit and thus suffer from a substantial switching noise injected into global supply and ground busses. Usually when the reference signal comes from a crystal oscillator, VCO becomes a main source of phase noise. A designer of VCO needs to determine the best circuit structure by considering different prototypical perturbations scenarios and predicting the worst case and jitter response when the perturbation signals are switched on and off. Therefore the time efficient estimation of the jitter effects resulting from many shapes, frequencies and phases of perturbation is critical.The presented dissertation demonstrates simulation methodology for rapid estimation of jitter in oscillators, particularly in VCOs, caused by perturbation sources such as power supply and substrate couplings. The methodology is also extended to these types of PLLs in which the VCO instability is a main contributor to the output timing jitter.Simulation of oscillatory circuits is strongly effected by the round-off errors. Special technique was developed to eliminate these effects.The technique is applicable for predicting timing non-idealities for arbitrary perturbation shapes, frequencies and phases. Different jitter metrics can be easily extracted for all important perturbation scenarios.The methodology utilizes the new concept of the transient multi-cycle Voltage Impulse Sensitivity Function (VISF), which has been developed in the dissertation. It contains information about sensitivity of oscillator to noise injection and also allows for efficient prediction of the transient effects caused by switching on and off the perturbation sources. The methodology offers efficiency and great simplicity of use, which frees designers from complicated, time consuming analysis of data generated by a simulator. The very involved postprocessing of simulation data can be fully automated.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Electrical & Computer Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.